2.2.110 Problems 10901 to 11000

Table 2.221: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10901

\[ {}4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.077

10902

\[ {}9 x^{2} y^{\prime \prime }+a y^{3}+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.112

10903

\[ {}x^{3} \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )+12 y x +24 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.086

10904

\[ {}x^{3} y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.082

10905

\[ {}2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 y x \right ) y^{\prime }+b +x y \left (a +3 y x -2 x^{2} y^{2}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.089

10906

\[ {}2 \left (-x^{k}+4 x^{3}\right ) \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )-\left (k \,x^{k -1}-12 x^{2}\right ) \left (3 y^{\prime }+y^{2}\right )+a x y+b = 0 \]

[NONE]

0.120

10907

\[ {}x^{4} y^{\prime \prime }+a^{2} y^{n} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.088

10908

\[ {}x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.082

10909

\[ {}x^{4} y^{\prime \prime }-x^{2} \left (x +y^{\prime }\right ) y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.086

10910

\[ {}x^{4} y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.085

10911

\[ {}y^{\prime \prime } \sqrt {x}-y^{{3}/{2}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.108

10912

\[ {}\left (a \,x^{2}+b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {a \,x^{2}+b x +c}}\right ) = 0 \]

[NONE]

7.238

10913

\[ {}x^{\frac {n}{n +1}} y^{\prime \prime }-y^{\frac {2 n +1}{n +1}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.142

10914

\[ {}f \left (x \right )^{2} y^{\prime \prime }+f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }-h \left (y, f \left (x \right ) y^{\prime }\right ) = 0 \]

[NONE]

0.098

10915

\[ {}y^{\prime \prime } y-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.469

10916

\[ {}y^{\prime \prime } y-a x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.073

10917

\[ {}y^{\prime \prime } y-a \,x^{2} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.078

10918

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2}-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.543

10919

\[ {}y^{\prime \prime } y+y^{2}-a x -b = 0 \]

[NONE]

0.081

10920

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.540

10921

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.029

10922

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.822

10923

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right ) = 0 \]

[NONE]

0.122

10924

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-y^{2} \ln \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.102

10925

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-y^{\prime }+f \left (x \right ) y^{3}+y^{2} \left (\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {{f^{\prime }\left (x \right )}^{2}}{f \left (x \right )^{2}}\right ) = 0 \]

[NONE]

0.109

10926

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-f^{\prime }\left (x \right ) y-y^{3} = 0 \]

[NONE]

0.101

10927

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-f^{\prime \prime }\left (x \right ) y+f \left (x \right ) y^{3}-y^{4} = 0 \]

[NONE]

0.105

10928

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.251

10929

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

0.640

10930

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-\left (-1+a y\right ) y^{\prime }+2 a^{2} y^{2}-2 b^{2} y^{3}+a y = 0 \]

[[_2nd_order, _missing_x]]

1.167

10931

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right ) = 0 \]

[[_2nd_order, _missing_x]]

2.255

10932

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right ) = 0 \]

[[_2nd_order, _reducible, _mu_xy]]

1.456

10933

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.087

10934

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+\left (g \left (x \right )+y^{2} f \left (x \right )\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right ) = 0 \]

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.110

10935

\[ {}y^{\prime \prime } y-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3.875

10936

\[ {}y^{\prime \prime } y-a {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.326

10937

\[ {}y^{\prime \prime } y+a \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.754

10938

\[ {}y^{\prime \prime } y+a {y^{\prime }}^{2}+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

2.418

10939

\[ {}y^{\prime \prime } y+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{1-a} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.145

10940

\[ {}y^{\prime \prime } y+a {y^{\prime }}^{2}+f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.088

10941

\[ {}y^{\prime \prime } y+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4} = 0 \]

[[_2nd_order, _missing_x]]

7.645

10942

\[ {}y^{\prime \prime } y-\frac {\left (a -1\right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (a +2\right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{a +2} = 0 \]

[NONE]

0.126

10943

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_x]]

111.292

10944

\[ {}y^{\prime \prime } \left (x +y\right )+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

4.819

10945

\[ {}y^{\prime \prime } \left (x -y\right )+2 y^{\prime } \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.085

10946

\[ {}y^{\prime \prime } \left (x -y\right )-\left (y^{\prime }+1\right ) \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.085

10947

\[ {}y^{\prime \prime } \left (x -y\right )-h \left (y^{\prime }\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.167

10948

\[ {}2 y^{\prime \prime } y+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.010

10949

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}+a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.210

10950

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}+y^{2} f \left (x \right )+a = 0 \]

[NONE]

0.081

10951

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}-8 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

5.059

10952

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}-8 y^{3}-4 y^{2} = 0 \]

[[_2nd_order, _missing_x]]

1.268

10953

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}-4 \left (x +2 y\right ) y^{2} = 0 \]

[NONE]

0.083

10954

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}+\left (a y+b \right ) y^{2} = 0 \]

[[_2nd_order, _missing_x]]

1.589

10955

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3} = 0 \]

[NONE]

0.083

10956

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}+\left (b x +a y\right ) y^{2} = 0 \]

[NONE]

0.086

10957

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}-3 y^{4} = 0 \]

[[_2nd_order, _missing_x]]

2.003

10958

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4} = 0 \]

[[_Painleve, ‘4th‘]]

0.128

10959

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}+3 f \left (x \right ) y y^{\prime }+2 \left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y^{2}-8 y^{3} = 0 \]

[NONE]

0.103

10960

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2}+4 y^{2} y^{\prime }+1+y^{2} f \left (x \right )+y^{4} = 0 \]

[NONE]

0.090

10961

\[ {}2 y^{\prime \prime } y-3 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.302

10962

\[ {}2 y^{\prime \prime } y-3 {y^{\prime }}^{2}-4 y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

5.045

10963

\[ {}2 y^{\prime \prime } y-3 {y^{\prime }}^{2}+y^{2} f \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.080

10964

\[ {}2 y^{\prime \prime } y-6 {y^{\prime }}^{2}+\left (1+a y^{3}\right ) y^{2} = 0 \]

[[_2nd_order, _missing_x]]

1.526

10965

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

68.870

10966

\[ {}2 \left (y-a \right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.117

10967

\[ {}3 y^{\prime \prime } y-2 {y^{\prime }}^{2}-a \,x^{2}-b x -c = 0 \]

[NONE]

0.080

10968

\[ {}3 y^{\prime \prime } y-5 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.619

10969

\[ {}4 y^{\prime \prime } y-3 {y^{\prime }}^{2}+4 y = 0 \]

[[_2nd_order, _missing_x]]

16.979

10970

\[ {}4 y^{\prime \prime } y-3 {y^{\prime }}^{2}-12 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

4.819

10971

\[ {}4 y^{\prime \prime } y-3 {y^{\prime }}^{2}+a y^{3}+b y^{2}+c y = 0 \]

[[_2nd_order, _missing_x]]

7.431

10972

\[ {}4 y^{\prime \prime } y-3 {y^{\prime }}^{2}+\left (6 y^{2}-\frac {2 f^{\prime }\left (x \right ) y}{f \left (x \right )}\right ) y^{\prime }+y^{4}-2 y^{2} y^{\prime }+g \left (x \right ) y^{2}+f \left (x \right ) y = 0 \]

[NONE]

0.112

10973

\[ {}4 y^{\prime \prime } y-5 {y^{\prime }}^{2}+a y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.555

10974

\[ {}12 y^{\prime \prime } y-15 {y^{\prime }}^{2}+8 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

4.562

10975

\[ {}n y y^{\prime \prime }-\left (n -1\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.331

10976

\[ {}a y y^{\prime \prime }+b {y^{\prime }}^{2}+\operatorname {c4} y^{4}+\operatorname {c3} y^{3}+\operatorname {c2} y^{2}+\operatorname {c1} y+\operatorname {c0} = 0 \]

[[_2nd_order, _missing_x]]

179.940

10977

\[ {}a y y^{\prime \prime }+b {y^{\prime }}^{2}-\frac {y y^{\prime }}{\sqrt {c^{2}+x^{2}}} = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.799

10978

\[ {}a y y^{\prime \prime }-\left (a -1\right ) {y^{\prime }}^{2}+\left (a +2\right ) f \left (x \right ) y^{2} y^{\prime }+f \left (x \right )^{2} y^{4}+a f^{\prime }\left (x \right ) y^{3} = 0 \]

[NONE]

0.108

10979

\[ {}\left (a y+b \right ) y^{\prime \prime }+c {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.504

10980

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.691

10981

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}+a y y^{\prime }+f \left (x \right ) = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.087

10982

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime }+x \left (d +a y^{4}\right )+y \left (c +b y^{2}\right ) = 0 \]

[[_Painleve, ‘3rd‘]]

0.094

10983

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+b x y^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.086

10984

\[ {}x y y^{\prime \prime }+2 x {y^{\prime }}^{2}+a y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.627

10985

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.086

10986

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+a y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.213

10987

\[ {}x y y^{\prime \prime }-4 x {y^{\prime }}^{2}+4 y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.565

10988

\[ {}x y y^{\prime \prime }+\left (\frac {a x}{\sqrt {b^{2}-x^{2}}}-x \right ) {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.219

10989

\[ {}x \left (x +y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.763

10990

\[ {}2 x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.319

10991

\[ {}x^{2} \left (-1+y\right ) y^{\prime \prime }-2 x^{2} {y^{\prime }}^{2}-2 x \left (-1+y\right ) y^{\prime }-2 y \left (-1+y\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.095

10992

\[ {}x^{2} \left (x +y\right ) y^{\prime \prime }-\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.087

10993

\[ {}x^{2} \left (x -y\right ) y^{\prime \prime }+a \left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.088

10994

\[ {}2 x^{2} y y^{\prime \prime }-x^{2} \left (1+{y^{\prime }}^{2}\right )+y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.083

10995

\[ {}a \,x^{2} y y^{\prime \prime }+b \,x^{2} {y^{\prime }}^{2}+c x y y^{\prime }+d y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.087

10996

\[ {}x \left (x +1\right )^{2} y y^{\prime \prime }-x \left (x +1\right )^{2} {y^{\prime }}^{2}+2 \left (x +1\right )^{2} y y^{\prime }-a \left (x +2\right ) y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.099

10997

\[ {}8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.097

10998

\[ {}\operatorname {f0} \left (x \right ) y y^{\prime \prime }+\operatorname {f1} \left (x \right ) {y^{\prime }}^{2}+\operatorname {f2} \left (x \right ) y y^{\prime }+\operatorname {f3} \left (x \right ) y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.094

10999

\[ {}y^{2} y^{\prime \prime }-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

71.161

11000

\[ {}y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}+a x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.076