2.2.103 Problems 10201 to 10300

Table 2.219: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

10201

\begin{align*} y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.782

10202

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

6.293

10203

\begin{align*} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.779

10204

\begin{align*} 2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.767

10205

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -5\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.974

10206

\begin{align*} 2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.998

10207

\begin{align*} 2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x \sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.948

10208

\begin{align*} 2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\cos \left (x \right ) \sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.999

10209

\begin{align*} 2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x^{3}+x \sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

1.035

10210

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+2 y^{\prime } x -y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.905

10211

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.716

10212

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.757

10213

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.726

10214

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

6.271

10215

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.902

10216

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-8\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

6.161

10217

\begin{align*} x^{2} y^{\prime \prime }-9 y^{\prime } x +25 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.566

10218

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.732

10219

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.758

10220

\begin{align*} y^{\prime \prime } x +\left (-x +2\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.859

10221

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.595

10222

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.558

10223

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.821

10224

\begin{align*} x^{2} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

3.194

10225

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y&=x \,{\mathrm e}^{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.694

10226

\begin{align*} y^{\prime }&=y \left (1-y^{2}\right ) \\ \end{align*}

[_quadrature]

6.176

10227

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\frac {1}{1-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.512

10228

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.483

10229

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.388

10230

\begin{align*} \frac {x y^{\prime \prime }}{-x^{2}+1}+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.362

10231

\begin{align*} y^{\prime \prime }&=\left (x^{2}+3\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.874

10232

\begin{align*} y^{\prime \prime }+\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.480

10233

\begin{align*} x^{\prime }&=x+2 y+2 t +1 \\ y^{\prime }&=5 x+y+3 t -1 \\ \end{align*}

system_of_ODEs

1.484

10234

\begin{align*} y^{\prime \prime }+20 y^{\prime }+500 y&=100000 \cos \left (100 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

64.244

10235

\begin{align*} y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8.284

10236

\begin{align*} y^{\prime \prime }&=A y^{{2}/{3}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.950

10237

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.130

10238

\begin{align*} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.384

10239

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.985

10240

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

23.369

10241

\begin{align*} y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=6 \,{\mathrm e}^{x} x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.459

10242

\begin{align*} y^{\prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_linear, ‘class A‘]]

0.355

10243

\begin{align*} y^{\prime }+y&=\frac {1}{x^{2}} \\ \end{align*}
Series expansion around \(x=0\).

[[_linear, ‘class A‘]]

0.373

10244

\begin{align*} y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.306

10245

\begin{align*} y^{\prime }&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.235

10246

\begin{align*} y^{\prime \prime }&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _quadrature]]

0.562

10247

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_y]]

0.760

10248

\begin{align*} y^{\prime \prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.682

10249

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.753

10250

\begin{align*} h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}}&=b^{2} \\ \end{align*}

[_quadrature]

3.963

10251

\begin{align*} y^{\prime \prime }+2 y^{\prime }-24 y&=16-\left (2+x \right ) {\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

34.390

10252

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=6 \,{\mathrm e}^{2 t -2} \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.600

10253

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{\cos \left (x \right ) a} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

1.202

10254

\begin{align*} y^{\prime }&=\frac {y}{2 y \ln \left (y\right )+y-x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

7.783

10255

\begin{align*} y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.258

10256

\begin{align*} x^{2} y^{\prime }+{\mathrm e}^{-y}&=0 \\ \end{align*}

[_separable]

5.543

10257

\begin{align*} y^{\prime \prime }+{\mathrm e}^{y}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11.477

10258

\begin{align*} y^{\prime }&=\frac {y x +3 x -2 y+6}{y x -3 x -2 y+6} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18.887

10259

\begin{align*} y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.443

10260

\begin{align*} y^{\prime }&=a \\ \end{align*}

[_quadrature]

0.912

10261

\begin{align*} y^{\prime }&=x \\ \end{align*}

[_quadrature]

0.537

10262

\begin{align*} y^{\prime }&=1 \\ \end{align*}

[_quadrature]

0.775

10263

\begin{align*} y^{\prime }&=a x \\ \end{align*}

[_quadrature]

0.515

10264

\begin{align*} y^{\prime }&=a x y \\ \end{align*}

[_separable]

3.995

10265

\begin{align*} y^{\prime }&=a x +y \\ \end{align*}

[[_linear, ‘class A‘]]

1.677

10266

\begin{align*} y^{\prime }&=a x +b y \\ \end{align*}

[[_linear, ‘class A‘]]

2.139

10267

\begin{align*} y^{\prime }&=y \\ \end{align*}

[_quadrature]

0.903

10268

\begin{align*} y^{\prime }&=b y \\ \end{align*}

[_quadrature]

1.518

10269

\begin{align*} y^{\prime }&=a x +b y^{2} \\ \end{align*}

[[_Riccati, _special]]

39.691

10270

\begin{align*} c y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.543

10271

\begin{align*} c y^{\prime }&=a \\ \end{align*}

[_quadrature]

1.104

10272

\begin{align*} c y^{\prime }&=a x \\ \end{align*}

[_quadrature]

0.512

10273

\begin{align*} c y^{\prime }&=a x +y \\ \end{align*}

[[_linear, ‘class A‘]]

1.953

10274

\begin{align*} c y^{\prime }&=a x +b y \\ \end{align*}

[[_linear, ‘class A‘]]

2.152

10275

\begin{align*} c y^{\prime }&=y \\ \end{align*}

[_quadrature]

1.779

10276

\begin{align*} c y^{\prime }&=b y \\ \end{align*}

[_quadrature]

1.995

10277

\begin{align*} c y^{\prime }&=a x +b y^{2} \\ \end{align*}

[[_Riccati, _special]]

38.043

10278

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{r} \\ \end{align*}

[[_Riccati, _special]]

7.023

10279

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{r x} \\ \end{align*}

[_rational, _Riccati]

12.150

10280

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{r \,x^{2}} \\ \end{align*}

[_rational, _Riccati]

12.955

10281

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{y} \\ \end{align*}

[_rational, _Bernoulli]

4.906

10282

\begin{align*} a \sin \left (x \right ) y x y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.237

10283

\begin{align*} f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi &=0 \\ \end{align*}

[_quadrature]

0.213

10284

\begin{align*} y^{\prime }&=y+\sin \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.184

10285

\begin{align*} y^{\prime }&=\sin \left (x \right )+y^{2} \\ \end{align*}

[_Riccati]

16.792

10286

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\ \end{align*}

[_linear]

2.758

10287

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y^{2}}{x} \\ \end{align*}

[_Riccati]

6.500

10288

\begin{align*} y^{\prime }&=x +y+b y^{2} \\ \end{align*}

[_Riccati]

71.387

10289

\begin{align*} y^{\prime } x&=0 \\ \end{align*}

[_quadrature]

0.585

10290

\begin{align*} 5 y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.531

10291

\begin{align*} {\mathrm e} y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.546

10292

\begin{align*} \pi y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.546

10293

\begin{align*} \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.644

10294

\begin{align*} f \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.685

10295

\begin{align*} y^{\prime } x&=1 \\ \end{align*}

[_quadrature]

0.517

10296

\begin{align*} y^{\prime } x&=\sin \left (x \right ) \\ \end{align*}

[_quadrature]

0.423

10297

\begin{align*} \left (x -1\right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.585

10298

\begin{align*} y y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.148

10299

\begin{align*} y y^{\prime } x&=0 \\ \end{align*}

[_quadrature]

0.221

10300

\begin{align*} x y \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.196