| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.782 |
|
| \begin{align*}
x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
6.293 |
|
| \begin{align*}
x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.767 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -5\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.974 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.998 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.948 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\cos \left (x \right ) \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.999 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x^{3}+x \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.035 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }+2 y^{\prime } x -y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.905 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.716 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.726 |
|
| \begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
6.271 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.902 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-8\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
6.161 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-9 y^{\prime } x +25 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.732 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.758 |
|
| \begin{align*}
y^{\prime \prime } x +\left (-x +2\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.859 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.558 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.821 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
3.194 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y&=x \,{\mathrm e}^{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.694 |
|
| \begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
6.176 |
|
| \begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y&=\frac {1}{1-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
2.512 |
|
| \begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.483 |
|
| \begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
2.388 |
|
| \begin{align*}
\frac {x y^{\prime \prime }}{-x^{2}+1}+y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
2.362 |
|
| \begin{align*}
y^{\prime \prime }&=\left (x^{2}+3\right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.874 |
|
| \begin{align*}
y^{\prime \prime }+\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.480 |
|
| \begin{align*}
x^{\prime }&=x+2 y+2 t +1 \\
y^{\prime }&=5 x+y+3 t -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.484 |
|
| \begin{align*}
y^{\prime \prime }+20 y^{\prime }+500 y&=100000 \cos \left (100 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
64.244 |
|
| \begin{align*}
y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
8.284 |
|
| \begin{align*}
y^{\prime \prime }&=A y^{{2}/{3}} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
2.950 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
4.130 |
|
| \begin{align*}
y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.384 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
29.985 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
23.369 |
|
| \begin{align*}
y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=6 \,{\mathrm e}^{x} x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
4.459 |
|
| \begin{align*}
y^{\prime }+y&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_linear, ‘class A‘]] |
✗ |
✗ |
✓ |
✗ |
0.355 |
|
| \begin{align*}
y^{\prime }+y&=\frac {1}{x^{2}} \\
\end{align*} Series expansion around \(x=0\). |
[[_linear, ‘class A‘]] |
✗ |
✗ |
✓ |
✗ |
0.373 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✗ |
0.306 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[_quadrature] |
✗ |
✗ |
✓ |
✗ |
0.235 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _quadrature]] |
✗ |
✗ |
✓ |
✗ |
0.562 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_y]] |
✗ |
✗ |
✓ |
✗ |
0.760 |
|
| \begin{align*}
y^{\prime \prime }+y&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✓ |
✗ |
0.682 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✓ |
✗ |
0.753 |
|
| \begin{align*}
h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}}&=b^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.963 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-24 y&=16-\left (2+x \right ) {\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.390 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=6 \,{\mathrm e}^{2 t -2} \\
y \left (1\right ) &= 4 \\
y^{\prime }\left (1\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.600 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{\cos \left (x \right ) a} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.202 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{2 y \ln \left (y\right )+y-x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
7.783 |
|
| \begin{align*}
y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
4.258 |
|
| \begin{align*}
x^{2} y^{\prime }+{\mathrm e}^{-y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.543 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{y}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
11.477 |
|
| \begin{align*}
y^{\prime }&=\frac {y x +3 x -2 y+6}{y x -3 x -2 y+6} \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✗ |
✗ |
✗ |
✗ |
18.887 |
|
| \begin{align*}
y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime }&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.912 |
|
| \begin{align*}
y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.537 |
|
| \begin{align*}
y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.775 |
|
| \begin{align*}
y^{\prime }&=a x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.515 |
|
| \begin{align*}
y^{\prime }&=a x y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.995 |
|
| \begin{align*}
y^{\prime }&=a x +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.677 |
|
| \begin{align*}
y^{\prime }&=a x +b y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.139 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.903 |
|
| \begin{align*}
y^{\prime }&=b y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.518 |
|
| \begin{align*}
y^{\prime }&=a x +b y^{2} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
39.691 |
|
| \begin{align*}
c y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.543 |
|
| \begin{align*}
c y^{\prime }&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| \begin{align*}
c y^{\prime }&=a x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
c y^{\prime }&=a x +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| \begin{align*}
c y^{\prime }&=a x +b y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.152 |
|
| \begin{align*}
c y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.779 |
|
| \begin{align*}
c y^{\prime }&=b y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.995 |
|
| \begin{align*}
c y^{\prime }&=a x +b y^{2} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
38.043 |
|
| \begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
7.023 |
|
| \begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r x} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
12.150 |
|
| \begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r \,x^{2}} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
12.955 |
|
| \begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{y} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.906 |
|
| \begin{align*}
a \sin \left (x \right ) y x y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi &=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
y^{\prime }&=y+\sin \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.184 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x \right )+y^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
16.792 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.758 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right )+\frac {y^{2}}{x} \\
\end{align*} |
[_Riccati] |
✗ |
✗ |
✗ |
✗ |
6.500 |
|
| \begin{align*}
y^{\prime }&=x +y+b y^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
71.387 |
|
| \begin{align*}
y^{\prime } x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
5 y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.531 |
|
| \begin{align*}
{\mathrm e} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
\pi y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| \begin{align*}
f \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| \begin{align*}
y^{\prime } x&=\sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
y y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| \begin{align*}
y y^{\prime } x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
x y \sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.196 |
|