2.2.116 Problems 11501 to 11600

Table 2.233: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11501

\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+a n \,x^{n -1}-a \,x^{n} g \left (x \right )-a^{2} x^{2 n} f \left (x \right ) \]

[_Riccati]

32.093

11502

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,x^{n} g \left (x \right ) y+a n \,x^{n -1}+a^{2} x^{2 n} \left (g \left (x \right )-f \left (x \right )\right ) \]

[_Riccati]

25.435

11503

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+\lambda f \left (x \right ) \]

[_Riccati]

2.700

11504

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

3.966

11505

\[ {}y^{\prime } = y^{2} f \left (x \right )+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

[_Riccati]

3.460

11506

\[ {}y^{\prime } = y^{2} f \left (x \right )+\lambda y+a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

[_Riccati]

1.951

11507

\[ {}y^{\prime } = y^{2} f \left (x \right )-f \left (x \right ) \left (a \,{\mathrm e}^{\lambda x}+b \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

4.603

11508

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} f \left (x \right ) y^{2}+\left (a f \left (x \right )-\lambda \right ) y+b \,{\mathrm e}^{-\lambda x} f \left (x \right ) \]

[_Riccati]

2.954

11509

\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{\lambda x} g \left (x \right )-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

[_Riccati]

3.630

11510

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,{\mathrm e}^{\lambda x} g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}+a^{2} {\mathrm e}^{2 \lambda x} \left (g \left (x \right )-f \left (x \right )\right ) \]

[_Riccati]

5.523

11511

\[ {}y^{\prime } = y^{2} f \left (x \right )+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} f \left (x \right ) {\mathrm e}^{2 \lambda \,x^{2}} \]

[_Riccati]

3.316

11512

\[ {}y^{\prime } = y^{2} f \left (x \right )+\lambda x y+a f \left (x \right ) {\mathrm e}^{\lambda x} \]

[_Riccati]

2.390

11513

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \tanh \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \]

[_Riccati]

318.981

11514

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \coth \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \]

[_Riccati]

256.020

11515

\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \sinh \left (\lambda x \right )-a^{2} f \left (x \right ) \sinh \left (\lambda x \right )^{2} \]

[_Riccati]

24.610

11516

\[ {}y^{\prime } x = y^{2} f \left (x \right )+a -a^{2} f \left (x \right ) \ln \left (x \right )^{2} \]

[_Riccati]

2.160

11517

\[ {}y^{\prime } x = f \left (x \right ) \left (y+a \ln \left (x \right )\right )^{2}-a \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.378

11518

\[ {}y^{\prime } = y^{2} f \left (x \right )-a x \ln \left (x \right ) f \left (x \right ) y+a \ln \left (x \right )+a \]

[_Riccati]

1.777

11519

\[ {}y^{\prime } = -a \ln \left (x \right ) y^{2}+a f \left (x \right ) \left (x \ln \left (x \right )-x \right ) y-f \left (x \right ) \]

[_Riccati]

3.152

11520

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+f \left (x \right ) \cos \left (\lambda x \right ) y-f \left (x \right ) \]

[_Riccati]

6.842

11521

\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \sin \left (\lambda x \right )+a^{2} f \left (x \right ) \sin \left (\lambda x \right )^{2} \]

[_Riccati]

40.831

11522

\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \cos \left (\lambda x \right )+a^{2} f \left (x \right ) \cos \left (\lambda x \right )^{2} \]

[_Riccati]

41.256

11523

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \tan \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \]

[_Riccati]

449.732

11524

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \cot \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \]

[_Riccati]

450.588

11525

\[ {}y^{\prime } = y^{2}-f \left (x \right )^{2}+f^{\prime }\left (x \right ) \]

[_Riccati]

0.953

11526

\[ {}y^{\prime } = y^{2} f \left (x \right )-f \left (x \right ) g \left (x \right ) y+g^{\prime }\left (x \right ) \]

[_Riccati]

1.293

11527

\[ {}y^{\prime } = -f^{\prime }\left (x \right ) y^{2}+f \left (x \right ) g \left (x \right ) y-g \left (x \right ) \]

[_Riccati]

1.335

11528

\[ {}y^{\prime } = g \left (x \right ) \left (y-f \left (x \right )\right )^{2}+f^{\prime }\left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.329

11529

\[ {}y^{\prime } = \frac {f^{\prime }\left (x \right ) y^{2}}{g \left (x \right )}-\frac {g^{\prime }\left (x \right )}{f \left (x \right )} \]

[_Riccati]

1.582

11530

\[ {}f \left (x \right )^{2} y^{\prime }-f^{\prime }\left (x \right ) y^{2}+g \left (x \right ) \left (y-f \left (x \right )\right ) = 0 \]

[_Riccati]

1.438

11531

\[ {}y^{\prime } = f^{\prime }\left (x \right ) y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \,{\mathrm e}^{\lambda x} \]

[_Riccati]

1.740

11532

\[ {}y^{\prime } = y^{2} f \left (x \right )+g^{\prime }\left (x \right ) y+a f \left (x \right ) {\mathrm e}^{2 g \left (x \right )} \]

[_Riccati]

0.893

11533

\[ {}y^{\prime } = y^{2}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )} \]

[_Riccati]

0.950

11534

\[ {}y^{\prime } = y^{2}+a^{2} f \left (a x +b \right ) \]

[_Riccati]

0.641

11535

\[ {}y^{\prime } = y^{2}+\frac {f \left (\frac {1}{x}\right )}{x^{4}} \]

[_Riccati]

0.807

11536

\[ {}y^{\prime } = y^{2}+\frac {f \left (\frac {a x +b}{c x +d}\right )}{\left (c x +d \right )^{4}} \]

[_Riccati]

1.727

11537

\[ {}x^{2} y^{\prime } = x^{4} f \left (x \right ) y^{2}+1 \]

[_Riccati]

1.406

11538

\[ {}x^{2} y^{\prime } = x^{4} y^{2}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4} \]

[_Riccati]

2.944

11539

\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+h \left (x \right ) \]

[_Riccati]

1.175

11540

\[ {}y^{\prime } = y^{2}+{\mathrm e}^{2 \lambda x} f \left ({\mathrm e}^{\lambda x}\right )-\frac {\lambda ^{2}}{4} \]

[_Riccati]

1.372

11541

\[ {}y^{\prime } = y^{2}-\frac {\lambda ^{2}}{4}+\frac {{\mathrm e}^{2 \lambda x} f \left (\frac {a \,{\mathrm e}^{\lambda x}+b}{c \,{\mathrm e}^{\lambda x}+d}\right )}{\left (c \,{\mathrm e}^{\lambda x}+d \right )^{4}} \]

[_Riccati]

20.879

11542

\[ {}y^{\prime } = y^{2}-\lambda ^{2}+\frac {f \left (\coth \left (\lambda x \right )\right )}{\sinh \left (\lambda x \right )^{4}} \]

[_Riccati]

23.793

11543

\[ {}y^{\prime } = y^{2}-\lambda ^{2}+\frac {f \left (\tanh \left (\lambda x \right )\right )}{\cosh \left (\lambda x \right )^{4}} \]

[_Riccati]

7.373

11544

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+f \left (a \ln \left (x \right )+b \right )+\frac {1}{4} \]

[_Riccati]

1.160

11545

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\cot \left (\lambda x \right )\right )}{\sin \left (\lambda x \right )^{4}} \]

[_Riccati]

24.073

11546

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\tan \left (\lambda x \right )\right )}{\cos \left (\lambda x \right )^{4}} \]

[_Riccati]

8.061

11547

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\sin \left (\lambda x +b \right )^{4}} \]

[_Riccati]

318.969

11548

\[ {}y y^{\prime }-y = A \]

[_quadrature]

0.383

11549

\[ {}y y^{\prime }-y = A x +B \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.969

11550

\[ {}y y^{\prime }-y = -\frac {2 x}{9}+A +\frac {B}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.126

11551

\[ {}y y^{\prime }-y = 2 A \left (\sqrt {x}+4 A +\frac {3 A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.617

11552

\[ {}y y^{\prime }-y = A x +\frac {B}{x}-\frac {B^{2}}{x^{3}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.667

11553

\[ {}y y^{\prime }-y = A \,x^{k -1}-k B \,x^{k}+k \,B^{2} x^{2 k -1} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.079

11554

\[ {}y y^{\prime }-y = \frac {A}{x}-\frac {A^{2}}{x^{3}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.548

11555

\[ {}y y^{\prime }-y = A +B \,{\mathrm e}^{-\frac {2 x}{A}} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

0.743

11556

\[ {}y y^{\prime }-y = A \left ({\mathrm e}^{\frac {2 x}{A}}-1\right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

0.681

11557

\[ {}y y^{\prime }-y = -\frac {2 \left (m +1\right )}{\left (m +3\right )^{2}}+A \,x^{m} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.147

11558

\[ {}y y^{\prime }-y = -\frac {2 x}{9}+6 A^{2} \left (1+\frac {2 A}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.756

11559

\[ {}y y^{\prime }-y = \frac {2 m -2}{\left (m -3\right )^{2}}+\frac {2 A \left (m \left (m +3\right ) \sqrt {x}+\left (4 m^{2}+3 m +9\right ) A +\frac {3 m \left (m +3\right ) A^{2}}{\sqrt {x}}\right )}{\left (m -3\right )^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

67.408

11560

\[ {}y y^{\prime }-y = \frac {\left (2 m +1\right ) x}{4 m^{2}}+\frac {A}{x}-\frac {A^{2}}{x^{3}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.877

11561

\[ {}y y^{\prime }-y = \frac {4}{9} x +2 A \,x^{2}+2 A^{2} x^{3} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.701

11562

\[ {}y y^{\prime }-y = -\frac {3 x}{16}+\frac {5 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.554

11563

\[ {}y y^{\prime }-y = \frac {A}{x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.332

11564

\[ {}y y^{\prime }-y = -\frac {x}{4}+\frac {A \left (\sqrt {x}+5 A +\frac {3 A^{2}}{\sqrt {x}}\right )}{4} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.611

11565

\[ {}y y^{\prime }-y = \frac {2 a^{2}}{\sqrt {8 a^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

1.274

11566

\[ {}y y^{\prime }-y = 2 x +\frac {A}{x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.491

11567

\[ {}y y^{\prime }-y = -\frac {6 X}{25}+\frac {2 A \left (2 \sqrt {x}+19 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{25} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

30.726

11568

\[ {}y y^{\prime }-y = \frac {3 x}{8}+\frac {3 \sqrt {a^{2}+x^{2}}}{8}-\frac {a^{2}}{16 \sqrt {a^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

3.985

11569

\[ {}y y^{\prime }-y = -\frac {4 x}{25}+\frac {A}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.016

11570

\[ {}y y^{\prime }-y = -\frac {9 x}{100}+\frac {A}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

74.961

11571

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {2 A \left (5 \sqrt {x}+34 A +\frac {15 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.977

11572

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {A \left (25 \sqrt {x}+41 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{98} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.846

11573

\[ {}y y^{\prime }-y = -\frac {2 x}{9}+\frac {A}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.736

11574

\[ {}y y^{\prime }-y = -\frac {5 x}{36}+\frac {A}{x^{{7}/{5}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

81.215

11575

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {6 A \left (-3 \sqrt {x}+23 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.484

11576

\[ {}y y^{\prime }-y = -\frac {30 x}{121}+\frac {3 A \left (21 \sqrt {x}+35 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{242} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.713

11577

\[ {}y y^{\prime }-y = -\frac {3 x}{16}+\frac {A}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

72.305

11578

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {4 A \left (-10 \sqrt {x}+27 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.971

11579

\[ {}y y^{\prime }-y = \frac {A}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.966

11580

\[ {}y y^{\prime }-y = \frac {A}{x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.417

11581

\[ {}y y^{\prime }-y = A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (n +1\right ) \left (n +3\right ) A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

28.412

11582

\[ {}y y^{\prime }-y = A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (2 n +3\right ) A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

30.745

11583

\[ {}y y^{\prime }-y = A \sqrt {x}+2 A^{2}+\frac {B}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14.391

11584

\[ {}y y^{\prime }-y = 2 A^{2}-A \sqrt {x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.935

11585

\[ {}y y^{\prime }-y = -\frac {x}{4}+\frac {6 A \left (\sqrt {x}+8 A +\frac {5 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.671

11586

\[ {}y y^{\prime }-y = -\frac {6 x}{25}+\frac {6 A \left (2 \sqrt {x}+7 A +\frac {4 A^{2}}{\sqrt {x}}\right )}{25} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.005

11587

\[ {}y y^{\prime }-y = -\frac {3 x}{16}+\frac {3 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.239

11588

\[ {}y y^{\prime }-y = \frac {3 x}{8}+\frac {3 \sqrt {b^{2}+x^{2}}}{8}+\frac {3 b^{2}}{16 \sqrt {b^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

3.606

11589

\[ {}y y^{\prime }-y = \frac {9 x}{32}+\frac {15 \sqrt {b^{2}+x^{2}}}{32}+\frac {3 b^{2}}{64 \sqrt {b^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

6.022

11590

\[ {}y y^{\prime }-y = -\frac {3 x}{32}-\frac {3 \sqrt {a^{2}+x^{2}}}{32}+\frac {15 a^{2}}{64 \sqrt {a^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

3.925

11591

\[ {}y y^{\prime }-y = A \,x^{2}-\frac {9}{625 A} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.531

11592

\[ {}y y^{\prime }-y = -\frac {6}{25} x -A \,x^{2} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.517

11593

\[ {}y y^{\prime }-y = \frac {6}{25} x -A \,x^{2} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.522

11594

\[ {}y y^{\prime }-y = 12 x +\frac {A}{x^{{5}/{2}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.978

11595

\[ {}y y^{\prime }-y = \frac {63 x}{4}+\frac {A}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

80.299

11596

\[ {}y y^{\prime }-y = 2 x +2 A \left (10 \sqrt {x}+31 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.422

11597

\[ {}y y^{\prime }-y = 2 x +2 A \left (-10 \sqrt {x}+19 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.056

11598

\[ {}y y^{\prime }-y = -\frac {28 x}{121}+\frac {2 A \left (5 \sqrt {x}+106 A +\frac {65 A^{2}}{\sqrt {x}}\right )}{121} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.909

11599

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {A \left (5 \sqrt {x}+262 A +\frac {65 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.905

11600

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+A \sqrt {x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.014