2.2.122 Problems 12101 to 12200

Table 2.245: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12101

\[ {}\left (2 y^{\prime } x -y\right )^{2} = 8 x^{3} \]

[_linear]

0.520

12102

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

0.207

12103

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

1.860

12104

\[ {}2 y^{\prime } x -y+\ln \left (y^{\prime }\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5.154

12105

\[ {}4 x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.215

12106

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.240

12107

\[ {}y^{\prime }+2 y x = x^{2}+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.364

12108

\[ {}y = -y^{\prime } x +x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

1.987

12109

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.346

12110

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.809

12111

\[ {}a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.347

12112

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.267

12113

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

8.332

12114

\[ {}\left (-y+y^{\prime } x \right )^{2} = 1+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.511

12115

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 y^{\prime } x -1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.491

12116

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.024

12117

\[ {}{\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0 \]

[‘y=_G(x,y’)‘]

169.918

12118

\[ {}x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x = 0 \]

[[_homogeneous, ‘class G‘], _rational]

11.724

12119

\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.657

12120

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

204.889

12121

\[ {}a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.334

12122

\[ {}\left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 y x -x^{2} y^{\prime }\right ) \]

[‘y=_G(x,y’)‘]

6.844

12123

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2} \]

[_quadrature]

1.451

12124

\[ {}y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.480

12125

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class G‘]]

5.221

12126

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.349

12127

\[ {}y = {y^{\prime }}^{2} \left (x +1\right ) \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.688

12128

\[ {}\left (-y+y^{\prime } x \right ) \left (x +y y^{\prime }\right ) = a^{2} y^{\prime } \]

[_rational]

100.562

12129

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \]

[_separable]

1.052

12130

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.528

12131

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (y x +2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

2.285

12132

\[ {}y = y^{\prime } x +\frac {y {y^{\prime }}^{2}}{x^{2}} \]

[[_1st_order, _with_linear_symmetries]]

2.975

12133

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{2} y^{2}+x^{4} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.123

12134

\[ {}y = y^{\prime } x +\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.421

12135

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.353

12136

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (y x -2\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _Clairaut]

0.594

12137

\[ {}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

[_quadrature]

0.502

12138

\[ {}8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

29.853

12139

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

0.210

12140

\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

0.552

12141

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.807

12142

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.649

12143

\[ {}y^{\prime \prime \prime }-y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.077

12144

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.068

12145

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.070

12146

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.068

12147

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime }-y = 0 \]

[[_high_order, _missing_x]]

0.066

12148

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.062

12149

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.076

12150

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.066

12151

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

[[_3rd_order, _missing_y]]

0.106

12152

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.999

12153

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.155

12154

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.913

12155

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.957

12156

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

0.119

12157

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.261

12158

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.112

12159

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.342

12160

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.812

12161

\[ {}y^{\prime \prime }+4 y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.814

12162

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.643

12163

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.008

12164

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.523

12165

\[ {}y^{\prime \prime \prime }-y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

0.115

12166

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime } = 3 x^{2}+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.171

12167

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = {\mathrm e}^{x}+4 \]

[[_high_order, _with_linear_symmetries]]

0.127

12168

\[ {}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

[[_2nd_order, _missing_y]]

1.467

12169

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.954

12170

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = x \ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

0.246

12171

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.576

12172

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.733

12173

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

17.752

12174

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \cos \left (x \right )-{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.662

12175

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.134

12176

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{3}-x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.084

12177

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _missing_y]]

0.132

12178

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.167

12179

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \left (1+\ln \left (x \right )\right )^{2} \]

[[_high_order, _linear, _nonhomogeneous]]

0.694

12180

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x \]

[[_3rd_order, _missing_y]]

0.110

12181

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.292

12182

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.301

12183

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_high_order, _with_linear_symmetries]]

0.115

12184

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.802

12185

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {1}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.253

12186

\[ {}y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.967

12187

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = x \]

[[_2nd_order, _with_linear_symmetries]]

1.655

12188

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = x^{2}-x -1 \]

[[_2nd_order, _with_linear_symmetries]]

0.994

12189

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.559

12190

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.516

12191

\[ {}\sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13.956

12192

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.441

12193

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.594

12194

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.769

12195

\[ {}y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+{\mathrm e}^{2 x} y = {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.888

12196

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.411

12197

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.043

12198

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.415

12199

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.502

12200

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

0.910