2.2.123 Problems 12201 to 12300

Table 2.247: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12201

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.180

12202

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.230

12203

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.257

12204

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.899

12205

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.299

12206

\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.546

12207

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.625

12208

\[ {}x^{2} y^{\prime \prime }-2 n x \left (x +1\right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.003

12209

\[ {}x^{4} y^{\prime \prime }+2 x^{3} \left (x +1\right ) y^{\prime }+n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.685

12210

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.680

12211

\[ {}\left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1 \]

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

1.018

12212

\[ {}y^{\prime \prime }+y^{\prime } x = x \]

[[_2nd_order, _missing_y]]

1.286

12213

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

1.173

12214

\[ {}\left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_y]]

0.627

12215

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.389

12216

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.044

12217

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

34.146

12218

\[ {}y^{\prime \prime } y+2 y^{\prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.257

12219

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.055

12220

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime } x +y = -x^{2}+1 \]

[[_3rd_order, _with_linear_symmetries]]

0.058

12221

\[ {}\left (x +2\right )^{2} y^{\prime \prime \prime }+\left (x +2\right ) y^{\prime \prime }+y^{\prime } = 1 \]

[[_3rd_order, _missing_y]]

0.838

12222

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.554

12223

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.733

12224

\[ {}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.056

12225

\[ {}2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0 \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.050

12226

\[ {}x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.257

12227

\[ {}x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

112.836

12228

\[ {}x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.043

12229

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y]]

1.082

12230

\[ {}x^{2} y y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.084

12231

\[ {}x^{3} y^{\prime \prime }-\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.087

12232

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )-x^{2} y^{2} \]

[[_2nd_order, _reducible, _mu_xy]]

0.161

12233

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.441

12234

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.361

12235

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

1.319

12236

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.537

12237

\[ {}\left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 y^{\prime } x +6 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.049

12238

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.361

12239

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.456

12240

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

0.766

12241

\[ {}x \left (x +2 y\right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.856

12242

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.358

12243

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

[[_2nd_order, _missing_y]]

36.503

12244

\[ {}4 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.247

12245

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.992

12246

\[ {}\left [\begin {array}{c} 3 x^{\prime }+3 x+2 y={\mathrm e}^{t} \\ 4 x-3 y^{\prime }+3 y=3 t \end {array}\right ] \]

system_of_ODEs

0.549

12247

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

1.425

12248

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

2.618

12249

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

0.404

12250

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

[[_2nd_order, _missing_x]]

1.194

12251

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

0.396

12252

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

[[_linear, ‘class A‘]]

0.954

12253

\[ {}2 t x^{\prime } = x \]

[_separable]

1.438

12254

\[ {}t^{2} x^{\prime \prime }-6 x = 0 \]

[[_Emden, _Fowler]]

0.627

12255

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

[[_2nd_order, _missing_x]]

0.776

12256

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

0.725

12257

\[ {}x^{\prime } = x^{2}+t^{2} \]

[[_Riccati, _special]]

1.012

12258

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]
i.c.

[_quadrature]

0.524

12259

\[ {}x^{\prime } = \frac {1+t}{\sqrt {t}} \]
i.c.

[_quadrature]

0.461

12260

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]
i.c.

[[_2nd_order, _quadrature]]

1.600

12261

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

[_quadrature]

0.281

12262

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

[_quadrature]

0.262

12263

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

[_quadrature]

0.377

12264

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]
i.c.

[_quadrature]

0.529

12265

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

1.470

12266

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

0.674

12267

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

0.704

12268

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

0.405

12269

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

0.471

12270

\[ {}x^{\prime } = a x+b \]

[_quadrature]

0.323

12271

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

[_quadrature]

0.478

12272

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

0.401

12273

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

0.368

12274

\[ {}x^{\prime } = \frac {2 x}{1+t} \]

[_separable]

1.398

12275

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

[_separable]

1.765

12276

\[ {}\left (2 u+1\right ) u^{\prime }-1-t = 0 \]

[_separable]

2.359

12277

\[ {}R^{\prime } = \left (1+t \right ) \left (1+R^{2}\right ) \]

[_separable]

1.878

12278

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

5.415

12279

\[ {}\left (1+t \right ) x^{\prime }+x^{2} = 0 \]

[_separable]

1.330

12280

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

0.352

12281

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

1.956

12282

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

1.828

12283

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

2.717

12284

\[ {}x^{\prime } = x \left (4+x\right ) \]
i.c.

[_quadrature]

1.195

12285

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

2.380

12286

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

2.231

12287

\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \]
i.c.

[_separable]

1.711

12288

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]
i.c.

[_separable]

1.454

12289

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

1.932

12290

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]
i.c.

[_separable]

1.081

12291

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

1.648

12292

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 x t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.531

12293

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

1.367

12294

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

[[_2nd_order, _missing_y]]

0.964

12295

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.938

12296

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

1.812

12297

\[ {}x^{\prime } = 2 t^{3} x-6 \]

[_linear]

1.276

12298

\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

[_separable]

2.459

12299

\[ {}x^{\prime } = t -x^{2} \]

[[_Riccati, _special]]

0.970

12300

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

[_linear]

1.024