2.2.133 Problems 13201 to 13300

Table 2.267: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13201

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.267

13202

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.266

13203

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.297

13204

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.276

13205

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.266

13206

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.380

13207

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.372

13208

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.332

13209

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.500

13210

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.288

13211

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.352

13212

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.544

13213

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.280

13214

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.425

13215

\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

0.242

13216

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

13217

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.310

13218

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

13219

\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

0.220

13220

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.305

13221

\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.295

13222

\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.323

13223

\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

13224

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.328

13225

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.566

13226

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

13227

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.572

13228

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.456

13229

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.668

13230

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.461

13231

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _missing_y]]

0.478

13232

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

13233

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

13234

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

13235

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.804

13236

\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.584

13237

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.287

13238

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.473

13239

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.310

13240

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.285

13241

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.332

13242

\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.358

13243

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]
i.c.

[[_3rd_order, _missing_x]]

0.298

13244

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.248

13245

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.300

13246

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

1.389

13247

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

0.438

13248

\[ {}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

0.409

13249

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.577

13250

\[ {}t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.414

13251

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.337

13252

\[ {}y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.243

13253

\[ {}t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.351

13254

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]

[[_2nd_order, _missing_x]]

0.833

13255

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

5.660

13256

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]

[[_2nd_order, _missing_x]]

1.456

13257

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

[[_3rd_order, _missing_x]]

0.092

13258

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.986

13259

\[ {}y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

[[_3rd_order, _missing_y]]

0.128

13260

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=3 x-4 y \end {array}\right ] \]

system_of_ODEs

0.307

13261

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {5 x}{4}+\frac {3 y}{4} \\ y^{\prime }=\frac {x}{2}-\frac {3 y}{2} \end {array}\right ] \]

system_of_ODEs

0.504

13262

\[ {}\left [\begin {array}{c} x^{\prime }-x+2 y=0 \\ y^{\prime }+y-x=0 \end {array}\right ] \]

system_of_ODEs

0.347

13263

\[ {}\left [\begin {array}{c} x^{\prime }+5 x-2 y=0 \\ y^{\prime }+2 x-y=0 \end {array}\right ] \]

system_of_ODEs

0.500

13264

\[ {}\left [\begin {array}{c} x^{\prime }-3 x+2 y=0 \\ y^{\prime }-x+3 y=0 \end {array}\right ] \]

system_of_ODEs

0.461

13265

\[ {}\left [\begin {array}{c} x^{\prime }+x-z=0 \\ x+y^{\prime }-y=0 \\ z^{\prime }+x+2 y-3 z=0 \end {array}\right ] \]

system_of_ODEs

0.326

13266

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {x}{2}+2 y-3 z \\ y^{\prime }=y-\frac {z}{2} \\ z^{\prime }=-2 x+z \end {array}\right ] \]

system_of_ODEs

0.857

13267

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }=y \\ x^{\prime }-y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.348

13268

\[ {}\left [\begin {array}{c} x^{\prime }+2 y^{\prime }=t \\ x^{\prime }-y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.449

13269

\[ {}\left [\begin {array}{c} x^{\prime }-y^{\prime }=x+y-t \\ 2 x^{\prime }+3 y^{\prime }=2 x+6 \end {array}\right ] \]

system_of_ODEs

0.471

13270

\[ {}\left [\begin {array}{c} 2 x^{\prime }-y^{\prime }=t \\ 3 x^{\prime }+2 y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.356

13271

\[ {}\left [\begin {array}{c} 5 x^{\prime }-3 y^{\prime }=x+y \\ 3 x^{\prime }-y^{\prime }=t \end {array}\right ] \]

system_of_ODEs

0.462

13272

\[ {}\left [\begin {array}{c} x^{\prime }-4 y^{\prime }=0 \\ 2 x^{\prime }-3 y^{\prime }=y+t \end {array}\right ] \]

system_of_ODEs

0.341

13273

\[ {}\left [\begin {array}{c} 3 x^{\prime }+2 y^{\prime }=\sin \left (t \right ) \\ x^{\prime }-2 y^{\prime }=x+y+t \end {array}\right ] \]

system_of_ODEs

0.593

13274

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x+9 y+12 \,{\mathrm e}^{-t} \\ y^{\prime }=-5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.658

13275

\[ {}\left [\begin {array}{c} x^{\prime }=-7 x+6 y+6 \,{\mathrm e}^{-t} \\ y^{\prime }=-12 x+5 y+37 \end {array}\right ] \]

system_of_ODEs

0.766

13276

\[ {}\left [\begin {array}{c} x^{\prime }=-7 x+10 y+18 \,{\mathrm e}^{t} \\ y^{\prime }=-10 x+9 y+37 \end {array}\right ] \]

system_of_ODEs

0.947

13277

\[ {}\left [\begin {array}{c} x^{\prime }=-14 x+39 y+78 \sinh \left (t \right ) \\ y^{\prime }=-6 x+16 y+6 \cosh \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.194

13278

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y-2 z-2 \sinh \left (t \right ) \\ y^{\prime }=4 x+2 y-2 z+10 \cosh \left (t \right ) \\ z^{\prime }=-x+3 y+z+5 \end {array}\right ] \]

system_of_ODEs

2.122

13279

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+6 y-2 z+50 \,{\mathrm e}^{t} \\ y^{\prime }=6 x+2 y-2 z+21 \,{\mathrm e}^{-t} \\ z^{\prime }=-x+6 y+z+9 \end {array}\right ] \]

system_of_ODEs

0.891

13280

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-2 y+4 z \\ y^{\prime }=-2 x+y+2 z \\ z^{\prime }=-4 x-2 y+6 z+{\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.603

13281

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y+3 z \\ y^{\prime }=x-y+2 z+2 \,{\mathrm e}^{-t} \\ z^{\prime }=-2 x+2 y-2 z \end {array}\right ] \]

system_of_ODEs

0.823

13282

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+y-1-6 \,{\mathrm e}^{t} \\ y^{\prime }=-4 x+3 y+4 \,{\mathrm e}^{t}-3 \end {array}\right ] \]
i.c.

system_of_ODEs

0.565

13283

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y+24 \sin \left (t \right ) \\ y^{\prime }=9 x-3 y+12 \cos \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.852

13284

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-4 y+10 \,{\mathrm e}^{t} \\ y^{\prime }=3 x+14 y+6 \,{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.599

13285

\[ {}\left [\begin {array}{c} x^{\prime }=-7 x+4 y+6 \,{\mathrm e}^{3 t} \\ y^{\prime }=-5 x+2 y+6 \,{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.612

13286

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-3 y+z \\ y^{\prime }=2 y+2 z+29 \,{\mathrm e}^{-t} \\ z^{\prime }=5 x+y+z+39 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

22.906

13287

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y-z+5 \sin \left (t \right ) \\ y^{\prime }=y+z-10 \cos \left (t \right ) \\ z^{\prime }=x+z+2 \end {array}\right ] \]
i.c.

system_of_ODEs

1.431

13288

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+3 y+z+5 \sin \left (2 t \right ) \\ y^{\prime }=x-5 y-3 z+5 \cos \left (2 t \right ) \\ z^{\prime }=-3 x+7 y+3 z+23 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

2.250

13289

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+y-3 z+2 \,{\mathrm e}^{t} \\ y^{\prime }=4 x-y+2 z+4 \,{\mathrm e}^{t} \\ z^{\prime }=4 x-2 y+3 z+4 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

1.361

13290

\[ {}\left [\begin {array}{c} x^{\prime }=x+5 y+10 \sinh \left (t \right ) \\ y^{\prime }=19 x-13 y+24 \sinh \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.225

13291

\[ {}\left [\begin {array}{c} x^{\prime }=9 x-3 y-6 t \\ y^{\prime }=-x+11 y+10 t \end {array}\right ] \]

system_of_ODEs

0.486

13292

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.323

13293

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

0.362

13294

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.991

13295

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.468

13296

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.776

13297

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.842

13298

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.934

13299

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.785

13300

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0 \]

[_Jacobi]

0.728