# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.267 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.266 |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.297 |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.276 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.266 |
|
\[
{}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.380 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.372 |
|
\[
{}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.332 |
|
\[
{}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.500 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.288 |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.352 |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.544 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.280 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = t +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.425 |
|
\[
{}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.242 |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.380 |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.310 |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.369 |
|
\[
{}y^{\prime }-y = {\mathrm e}^{2 t}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.220 |
|
\[
{}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.305 |
|
\[
{}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.295 |
|
\[
{}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.323 |
|
\[
{}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.388 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.328 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.566 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.419 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.572 |
|
\[
{}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.456 |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.668 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.461 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right .
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.478 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.450 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.447 |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.503 |
|
\[
{}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.804 |
|
\[
{}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.584 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.287 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.473 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.310 |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.285 |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.332 |
|
\[
{}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.358 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.298 |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.248 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.300 |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
1.389 |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.438 |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.409 |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.577 |
|
\[
{}t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.414 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.337 |
|
\[
{}y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.243 |
|
\[
{}t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.351 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.833 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
5.660 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-7 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.456 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.092 |
|
\[
{}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.986 |
|
\[
{}y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.128 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=3 x-4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.307 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\frac {5 x}{4}+\frac {3 y}{4} \\ y^{\prime }=\frac {x}{2}-\frac {3 y}{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.504 |
|
\[
{}\left [\begin {array}{c} x^{\prime }-x+2 y=0 \\ y^{\prime }+y-x=0 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.347 |
|
\[
{}\left [\begin {array}{c} x^{\prime }+5 x-2 y=0 \\ y^{\prime }+2 x-y=0 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.500 |
|
\[
{}\left [\begin {array}{c} x^{\prime }-3 x+2 y=0 \\ y^{\prime }-x+3 y=0 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.461 |
|
\[
{}\left [\begin {array}{c} x^{\prime }+x-z=0 \\ x+y^{\prime }-y=0 \\ z^{\prime }+x+2 y-3 z=0 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.326 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-\frac {x}{2}+2 y-3 z \\ y^{\prime }=y-\frac {z}{2} \\ z^{\prime }=-2 x+z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.857 |
|
\[
{}\left [\begin {array}{c} x^{\prime }+y^{\prime }=y \\ x^{\prime }-y^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.348 |
|
\[
{}\left [\begin {array}{c} x^{\prime }+2 y^{\prime }=t \\ x^{\prime }-y^{\prime }=x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.449 |
|
\[
{}\left [\begin {array}{c} x^{\prime }-y^{\prime }=x+y-t \\ 2 x^{\prime }+3 y^{\prime }=2 x+6 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.471 |
|
\[
{}\left [\begin {array}{c} 2 x^{\prime }-y^{\prime }=t \\ 3 x^{\prime }+2 y^{\prime }=y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.356 |
|
\[
{}\left [\begin {array}{c} 5 x^{\prime }-3 y^{\prime }=x+y \\ 3 x^{\prime }-y^{\prime }=t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.462 |
|
\[
{}\left [\begin {array}{c} x^{\prime }-4 y^{\prime }=0 \\ 2 x^{\prime }-3 y^{\prime }=y+t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.341 |
|
\[
{}\left [\begin {array}{c} 3 x^{\prime }+2 y^{\prime }=\sin \left (t \right ) \\ x^{\prime }-2 y^{\prime }=x+y+t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.593 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-4 x+9 y+12 \,{\mathrm e}^{-t} \\ y^{\prime }=-5 x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.658 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-7 x+6 y+6 \,{\mathrm e}^{-t} \\ y^{\prime }=-12 x+5 y+37 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.766 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-7 x+10 y+18 \,{\mathrm e}^{t} \\ y^{\prime }=-10 x+9 y+37 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.947 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-14 x+39 y+78 \sinh \left (t \right ) \\ y^{\prime }=-6 x+16 y+6 \cosh \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.194 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+4 y-2 z-2 \sinh \left (t \right ) \\ y^{\prime }=4 x+2 y-2 z+10 \cosh \left (t \right ) \\ z^{\prime }=-x+3 y+z+5 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
2.122 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+6 y-2 z+50 \,{\mathrm e}^{t} \\ y^{\prime }=6 x+2 y-2 z+21 \,{\mathrm e}^{-t} \\ z^{\prime }=-x+6 y+z+9 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.891 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-2 x-2 y+4 z \\ y^{\prime }=-2 x+y+2 z \\ z^{\prime }=-4 x-2 y+6 z+{\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.603 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-2 y+3 z \\ y^{\prime }=x-y+2 z+2 \,{\mathrm e}^{-t} \\ z^{\prime }=-2 x+2 y-2 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.823 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=7 x+y-1-6 \,{\mathrm e}^{t} \\ y^{\prime }=-4 x+3 y+4 \,{\mathrm e}^{t}-3 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.565 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-2 y+24 \sin \left (t \right ) \\ y^{\prime }=9 x-3 y+12 \cos \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.852 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=7 x-4 y+10 \,{\mathrm e}^{t} \\ y^{\prime }=3 x+14 y+6 \,{\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.599 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-7 x+4 y+6 \,{\mathrm e}^{3 t} \\ y^{\prime }=-5 x+2 y+6 \,{\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.612 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x-3 y+z \\ y^{\prime }=2 y+2 z+29 \,{\mathrm e}^{-t} \\ z^{\prime }=5 x+y+z+39 \,{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
22.906 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+y-z+5 \sin \left (t \right ) \\ y^{\prime }=y+z-10 \cos \left (t \right ) \\ z^{\prime }=x+z+2 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.431 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x+3 y+z+5 \sin \left (2 t \right ) \\ y^{\prime }=x-5 y-3 z+5 \cos \left (2 t \right ) \\ z^{\prime }=-3 x+7 y+3 z+23 \,{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
2.250 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x+y-3 z+2 \,{\mathrm e}^{t} \\ y^{\prime }=4 x-y+2 z+4 \,{\mathrm e}^{t} \\ z^{\prime }=4 x-2 y+3 z+4 \,{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.361 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+5 y+10 \sinh \left (t \right ) \\ y^{\prime }=19 x-13 y+24 \sinh \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.225 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=9 x-3 y-6 t \\ y^{\prime }=-x+11 y+10 t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.486 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.323 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
0.362 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.991 |
|
\[
{}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.468 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
8.776 |
|
\[
{}y^{\prime \prime }+y = f \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.842 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.934 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.785 |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0
\] |
[_Jacobi] |
✓ |
0.728 |
|