2.2.133 Problems 13201 to 13300

Table 2.267: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13201

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.590

13202

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.580

13203

\[ {}x \left (-2+x \right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (-2+x \right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.757

13204

\[ {}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.826

13205

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.272

13206

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} {\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.137

13207

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

1.346

13208

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.966

13209

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.197

13210

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.164

13211

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.440

13212

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

[[_Emden, _Fowler]]

2.605

13213

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.201

13214

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.411

13215

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.185

13216

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

2.034

13217

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.124

13218

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.128

13219

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.125

13220

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

[[_2nd_order, _with_linear_symmetries]]

1.665

13221

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.503

13222

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.258

13223

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

5.255

13224

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.182

13225

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

0.255

13226

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.717

13227

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.165

13228

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.942

13229

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.385

13230

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.406

13231

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.914

13232

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.951

13233

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.359

13234

\[ {}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.054

13235

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.214

13236

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.508

13237

\[ {}y^{\prime \prime }+8 x y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.555

13238

\[ {}y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.573

13239

\[ {}y^{\prime \prime }+x y^{\prime }+\left (x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.571

13240

\[ {}y^{\prime \prime }+x y^{\prime }+\left (2+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.599

13241

\[ {}y^{\prime \prime }-x y^{\prime }+\left (3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.609

13242

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.621

13243

\[ {}\left (x -1\right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.635

13244

\[ {}\left (x^{3}-1\right ) y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.615

13245

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.633

13246

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.503

13247

\[ {}y^{\prime \prime }+x y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.544

13248

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+2 x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.631

13249

\[ {}\left (2 x^{2}-3\right ) y^{\prime \prime }-2 x y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.608

13250

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.644

13251

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.675

13252

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.634

13253

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.742

13254

\[ {}\left (x^{2}-3 x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.921

13255

\[ {}\left (x^{3}+x^{2}\right ) y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.099

13256

\[ {}\left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.174

13257

\[ {}\left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (-2+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.140

13258

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.792

13259

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.800

13260

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+\frac {8}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.826

13261

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (2 x^{2}+\frac {5}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.817

13262

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.816

13263

\[ {}2 x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.828

13264

\[ {}3 x y^{\prime \prime }-\left (-2+x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.845

13265

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.765

13266

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.836

13267

\[ {}x^{2} y^{\prime \prime }+\left (x^{4}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.803

13268

\[ {}x y^{\prime \prime }-\left (x^{2}+2\right ) y^{\prime }+x y = 0 \]

[_Lienard]

0.785

13269

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.965

13270

\[ {}\left (2 x^{2}-x \right ) y^{\prime \prime }+\left (2 x -2\right ) y^{\prime }+\left (-2 x^{2}+3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.913

13271

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\frac {3 y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.779

13272

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.252

13273

\[ {}x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.280

13274

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+8 \left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.269

13275

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.347

13276

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

0.746

13277

\[ {}2 x y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.227

13278

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.759

13279

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.203

13280

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-2 x-4 y={\mathrm e}^{t} \\ x^{\prime }+y^{\prime }-y={\mathrm e}^{4 t} \end {array}\right ] \]

system_of_ODEs

0.232

13281

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x=-2 t \\ x^{\prime }+y^{\prime }-3 x-y=t^{2} \end {array}\right ] \]

system_of_ODEs

0.190

13282

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-3 y={\mathrm e}^{t} \\ x^{\prime }+y^{\prime }+x={\mathrm e}^{3 t} \end {array}\right ] \]

system_of_ODEs

0.169

13283

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-2 y=2 \,{\mathrm e}^{t} \\ x^{\prime }+y^{\prime }-3 x-4 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.108

13284

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-x-y={\mathrm e}^{-t} \\ x^{\prime }+2 x+y^{\prime }+y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.685

13285

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-3 x-y=t \\ x^{\prime }+y^{\prime }-4 x-y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.496

13286

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-6 y={\mathrm e}^{3 t} \\ x^{\prime }+2 y^{\prime }-2 x-6 y=t \end {array}\right ] \]

system_of_ODEs

0.655

13287

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-3 y=3 t \\ x^{\prime }+2 y^{\prime }-2 x-3 y=1 \end {array}\right ] \]

system_of_ODEs

0.653

13288

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }+2 y=\sin \left (t \right ) \\ x^{\prime }+y^{\prime }-x-y=0 \end {array}\right ] \]

system_of_ODEs

0.220

13289

\[ {}\left [\begin {array}{c} x^{\prime }-y^{\prime }-2 x+4 y=t \\ x^{\prime }+y^{\prime }-x-y=1 \end {array}\right ] \]

system_of_ODEs

0.490

13290

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }+x+5 y=4 t \\ x^{\prime }+y^{\prime }+2 x+2 y=2 \end {array}\right ] \]

system_of_ODEs

0.483

13291

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x+5 y=t^{2} \\ x^{\prime }+2 y^{\prime }-2 x+4 y=2 t +1 \end {array}\right ] \]

system_of_ODEs

1.420

13292

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }+x+y=t^{2}+4 t \\ x^{\prime }+y^{\prime }+2 x+2 y=2 t^{2}-2 t \end {array}\right ] \]

system_of_ODEs

0.484

13293

\[ {}\left [\begin {array}{c} 3 x^{\prime }+2 y^{\prime }-x+y=t -1 \\ x^{\prime }+y^{\prime }-x=t +2 \end {array}\right ] \]

system_of_ODEs

0.628

13294

\[ {}\left [\begin {array}{c} 2 x^{\prime }+4 y^{\prime }+x-y=3 \,{\mathrm e}^{t} \\ x^{\prime }+y^{\prime }+2 x+2 y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.500

13295

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-x-y=-2 t \\ x^{\prime }+y^{\prime }+x-y=t^{2} \end {array}\right ] \]

system_of_ODEs

0.494

13296

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-x-y=1 \\ x^{\prime }+y^{\prime }+2 x-y=t \end {array}\right ] \]

system_of_ODEs

0.482

13297

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+4 y \\ y^{\prime }=2 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.460

13298

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+3 y \\ y^{\prime }=4 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.462

13299

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+2 y+5 t \\ y^{\prime }=3 x+4 y+17 t \end {array}\right ] \]

system_of_ODEs

0.513

13300

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-2 y \\ y^{\prime }=4 x-y \end {array}\right ] \]

system_of_ODEs

0.316