2.2.140 Problems 13901 to 14000

Table 2.281: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13901

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.069

13902

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.069

13903

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.105

13904

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

1.497

13905

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.529

13906

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.208

13907

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.489

13908

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.718

13909

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.119

13910

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.136

13911

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

5.966

13912

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x]]

0.110

13913

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

[[_high_order, _with_linear_symmetries]]

0.120

13914

\[ {}y^{\prime \prime }+4 x y = 0 \]

[[_Emden, _Fowler]]

0.441

13915

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.915

13916

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.191

13917

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.146

13918

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.877

13919

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.672

13920

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.367

13921

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_x]]

0.505

13922

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.996

13923

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.682

13924

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.118

13925

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.670

13926

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

1.123

13927

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.110

13928

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

[[_2nd_order, _missing_x]]

0.535

13929

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

[[_high_order, _missing_y]]

0.128

13930

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.996

13931

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 2 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.552

13932

\[ {}x^{3} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.319

13933

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

[[_high_order, _linear, _nonhomogeneous]]

0.127

13934

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

[[_2nd_order, _quadrature]]

1.200

13935

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.783

13936

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.256

13937

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

[[_high_order, _with_linear_symmetries]]

0.151

13938

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

[[_high_order, _missing_y]]

0.149

13939

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

0.454

13940

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

[[_2nd_order, _missing_y]]

0.519

13941

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.665

13942

\[ {}y^{\prime \prime } = 2 y^{3} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.304

13943

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.268

13944

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x \end {array}\right ] \]
i.c.

system_of_ODEs

0.462

13945

\[ {}\left [\begin {array}{c} x^{\prime }+5 x+y={\mathrm e}^{t} \\ y^{\prime }-x-3 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.852

13946

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=z \\ z^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.759

13947

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=\frac {y^{2}}{x} \end {array}\right ] \]

system_of_ODEs

0.054

13948

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

[_separable]

1.618

13949

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

[_separable]

1.940

13950

\[ {}y^{\prime } = \sin \left (x y\right ) \]

[‘y=_G(x,y’)‘]

1.362

13951

\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

[_separable]

2.066

13952

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.549

13953

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.480

13954

\[ {}y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

[‘y=_G(x,y’)‘]

1.638

13955

\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

[_separable]

1.347

13956

\[ {}y^{\prime } = \ln \left (x y\right ) \]

[‘y=_G(x,y’)‘]

0.637

13957

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

[_separable]

2.347

13958

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.823

13959

\[ {}y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.060

13960

\[ {}y^{\prime \prime }+y y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5.468

13961

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

[[_high_order, _missing_y]]

0.151

13962

\[ {}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.051

13963

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.059

13964

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

[_linear]

38.730

13965

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.061

13966

\[ {}y y^{\prime } = 1 \]

[_quadrature]

1.712

13967

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

[‘y=_G(x,y’)‘]

1.400

13968

\[ {}5 y^{\prime }-x y = 0 \]

[_separable]

1.575

13969

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.089

13970

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.543

13971

\[ {}y^{\prime \prime \prime } = 1 \]

[[_3rd_order, _quadrature]]

0.089

13972

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.352

13973

\[ {}y^{\prime \prime } = y+x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.263

13974

\[ {}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

[NONE]

0.064

13975

\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

[‘y=_G(x,y’)‘]

5.543

13976

\[ {}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.057

13977

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

[NONE]

0.223

13978

\[ {}y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.505

13979

\[ {}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

[NONE]

0.059

13980

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.375

13981

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.117

13982

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1.089

13983

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.078

13984

\[ {}\left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.299

13985

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.191

13986

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.022

13987

\[ {}x y^{\prime \prime }+2 x^{2} y^{\prime }+y \sin \left (x \right ) = \sinh \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.194

13988

\[ {}\sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +7 y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.498

13989

\[ {}y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.796

13990

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.201

13991

\[ {}x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.579

13992

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.134

13993

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.057

13994

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.856

13995

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.522

13996

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.813

13997

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.774

13998

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.598

13999

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.489

14000

\[ {}\ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.810