2.2.140 Problems 13901 to 14000

Table 2.281: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13901

x2yy=sin(x)2

[[_2nd_order, _linear, _nonhomogeneous]]

1.995

13902

y=y+x2

[[_2nd_order, _with_linear_symmetries]]

0.428

13903

y+xyy2=sin(x)

[NONE]

0.100

13904

y2+xyy2=ln(x)

[‘y=_G(x,y’)‘]

6.277

13905

sin(y)+yy=1

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.094

13906

sinh(x)y2+y=xy

[NONE]

0.375

13907

yy=1

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.936

13908

y2+y=sin(x)

[NONE]

0.115

13909

y+4y+y=0

[[_2nd_order, _missing_x]]

0.395

13910

y5y+yy=0

[[_3rd_order, _missing_x]]

0.128

13911

2y3y2y=0

[[_2nd_order, _missing_x]]

0.343

13912

3y2y+y=0

[[_high_order, _missing_x]]

0.082

13913

(x3)y+yln(x)=x2
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.600

13914

y+ytan(x)+cot(x)y=0
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.493

13915

(x2+1)y+(x1)y+y=0
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.431

13916

xy+2x2y+ysin(x)=sinh(x)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.650

13917

sin(x)y+yx+7y=1
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.028

13918

y(x1)y+x2y=tan(x)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.098

13919

(x1)yyx+y=0

[[_2nd_order, _with_linear_symmetries]]

0.836

13920

x2y4x2y+(x2+1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.852

13921

y+kxy4=0

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.273

13922

y+2yx+2y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

0.687

13923

xy+ysin(x)+cos(x)y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

1.036

13924

y+2x2y+4xy=2x

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.348

13925

(x2+1)y+(1x)y+y=2x+1

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.123

13926

y+4yx+(4x2+2)y=0

[[_2nd_order, _with_linear_symmetries]]

0.517

13927

x2y+x2y+2(1x)y=0

[[_2nd_order, _with_linear_symmetries]]

0.846

13928

y+x2y+2xy=2x

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.378

13929

ln(x2+1)y+4xyx2+1+(x2+1)y(x2+1)2=0

[[_2nd_order, _with_linear_symmetries]]

1.142

13930

xy+x2y+2xy=0

[[_2nd_order, _exact, _linear, _homogeneous]]

0.883

13931

y+ysin(x)+cos(x)y=cos(x)

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.149

13932

y+cot(x)yycsc(x)2=cos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

3.803

13933

xln(x)y+2yyx=1

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.965

13934

xy+(6xy2+1)y+2y3+1=0

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2.117

13935

xy1+y+yyxy2+y(1+y)2=xsin(x)

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.693

13936

(xcos(y)+sin(x))yxy2sin(y)+2(cos(y)+cos(x))y=ysin(x)

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

50.893

13937

yysin(x)+(ysin(x)+cos(x)y)y=cos(x)

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.301

13938

(1y)yy2=0

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.429

13939

(cos(y)ysin(y))yy2(2sin(y)+ycos(y))=sin(x)

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.322

13940

y+2xy2x14xy(2x1)2=0

[[_2nd_order, _with_linear_symmetries]]

0.699

13941

(x2+2x)y+(x2+x+10)y=(256x)y

[[_2nd_order, _with_linear_symmetries]]

0.712

13942

y+yx+1(x+2)yx2(x+1)=0

[[_2nd_order, _with_linear_symmetries]]

0.708

13943

(x2x)y+(2x2+4x3)y+8xy=0

[[_2nd_order, _with_linear_symmetries]]

0.636

13944

(x2x)yx+(3x+1)yx+yx=3x

[[_2nd_order, _linear, _nonhomogeneous]]

0.645

13945

(2sin(x)cos(x))y+(7sin(x)+4cos(x))y+10cos(x)y=0

[[_2nd_order, _with_linear_symmetries]]

10.349

13946

y+(x1)yx+yx3=e1xx3

[[_2nd_order, _linear, _nonhomogeneous]]

0.802

13947

y+(5+2x)y+(8+4x)y=e2x

[[_2nd_order, _linear, _nonhomogeneous]]

0.746

13948

y+9y=0
i.c.

[[_2nd_order, _missing_x]]

0.412

13949

4y4y+5y=0
i.c.

[[_2nd_order, _missing_x]]

0.441

13950

y+2y+y=0
i.c.

[[_2nd_order, _missing_x]]

0.288

13951

y4y+5y=0
i.c.

[[_2nd_order, _missing_x]]

0.329

13952

yy6y=0
i.c.

[[_2nd_order, _missing_x]]

0.291

13953

4y4y+37y=0
i.c.

[[_2nd_order, _missing_x]]

0.470

13954

y+3y+2y=0
i.c.

[[_2nd_order, _missing_x]]

0.331

13955

y+2y+5y=0
i.c.

[[_2nd_order, _missing_x]]

0.351

13956

4y12y+13y=0
i.c.

[[_2nd_order, _missing_x]]

0.353

13957

y+4y+13y=0
i.c.

[[_2nd_order, _missing_x]]

0.443

13958

y+6y+9y=0
i.c.

[[_2nd_order, _missing_x]]

0.294

13959

y+y=0
i.c.

[[_high_order, _missing_x]]

0.735

13960

y2y+5y=0
i.c.

[[_2nd_order, _missing_x]]

0.334

13961

y20y+51y=0
i.c.

[[_2nd_order, _missing_x]]

0.298

13962

2y+3y+y=0
i.c.

[[_2nd_order, _missing_x]]

0.311

13963

3y+8y3y=0
i.c.

[[_2nd_order, _missing_x]]

0.307

13964

2y+20y+51y=0
i.c.

[[_2nd_order, _missing_x]]

0.434

13965

4y+40y+101y=0
i.c.

[[_2nd_order, _missing_x]]

0.352

13966

y+6y+34y=0
i.c.

[[_2nd_order, _missing_x]]

0.468

13967

y+8y+16y=0
i.c.

[[_3rd_order, _missing_x]]

0.330

13968

y+6y+13y=0
i.c.

[[_3rd_order, _missing_x]]

0.471

13969

y6y+13y=0
i.c.

[[_3rd_order, _missing_x]]

0.472

13970

y+4y+29y=0
i.c.

[[_3rd_order, _missing_x]]

0.497

13971

y+6y+25y=0
i.c.

[[_3rd_order, _missing_x]]

0.459

13972

y6y+10y=0
i.c.

[[_3rd_order, _missing_x]]

0.498

13973

y+13y+36y=0
i.c.

[[_high_order, _missing_x]]

0.470

13974

y+2y+3y=9t
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.368

13975

4y+16y+17y=17t1
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.369

13976

4y+5y+4y=3et
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.539

13977

y4y+4y=e2tt2
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.314

13978

y+9y=e2t
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.505

13979

2y3y+17y=17t1
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.554

13980

y+2y+y=et
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.320

13981

y2y+5y=t+2
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.470

13982

y+2y=et2
i.c.

[[_linear, ‘class A‘]]

0.306

13983

y+8y+20y=sin(2t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.511

13984

4y4y+y=t2
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.359

13985

2y+yy=4sin(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

13986

y+y=e2t
i.c.

[[_linear, ‘class A‘]]

0.302

13987

3y+5y2y=7e2t
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.365

13988

y+y=Heaviside(t)Heaviside(t2)
i.c.

[[_linear, ‘class A‘]]

0.538

13989

2y+y=4t(Heaviside(t)Heaviside(t2))
i.c.

[[_linear, ‘class A‘]]

0.956

13990

y+9y=24sin(t)(Heaviside(t)+Heaviside(tπ))
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.719

13991

y+2y+y=Heaviside(t)Heaviside(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.855

13992

y+2y+2y=5cos(t)(Heaviside(t)Heaviside(tπ2))
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.076

13993

y+5y+6y=36t(Heaviside(t)Heaviside(t1))
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.484

13994

y+4y+13y=39Heaviside(t)507(t2)Heaviside(t2)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.464

13995

y+4y=3Heaviside(t)3Heaviside(t4)+(2t5)Heaviside(t4)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.769

13996

4y+4y+5y=25t(Heaviside(t)Heaviside(tπ2))
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.685

13997

y+4y+3y=Heaviside(t)Heaviside(t1)+Heaviside(t2)Heaviside(3+t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.985

13998

y2y={40t<161t
i.c.

[[_2nd_order, _missing_y]]

1.076

13999

y3y+2y={00t<111t<212t
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.666

14000

y+3y+2y={10t<212t
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.159