2.2.133 Problems 13201 to 13300

Table 2.279: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

13201

\begin{align*} y^{\prime }&=f \left (x \right ) \\ \end{align*}

[_quadrature]

0.160

13202

\begin{align*} y^{\prime }&=f \left (y\right ) \\ \end{align*}

[_quadrature]

0.389

13203

\begin{align*} y^{\prime }&=f \left (x \right ) g \left (y\right ) \\ \end{align*}

[_separable]

1.208

13204

\begin{align*} g \left (x \right ) y^{\prime }&=f_{1} \left (x \right ) y+f_{0} \left (x \right ) \\ \end{align*}

[_linear]

1.704

13205

\begin{align*} g \left (x \right ) y^{\prime }&=f_{1} \left (x \right ) y+f_{n} \left (x \right ) y^{n} \\ \end{align*}

[_Bernoulli]

2.516

13206

\begin{align*} y^{\prime }&=f \left (\frac {y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

1.512

13207

\begin{align*} y^{\prime }&=a y^{2}+b x +c \\ \end{align*}

[_Riccati]

0.160

13208

\begin{align*} y^{\prime }&=y^{2}-a^{2} x^{2}+3 a \\ \end{align*}

[_Riccati]

2.000

13209

\begin{align*} y^{\prime }&=y^{2}+a^{2} x^{2}+b x +c \\ \end{align*}

[_Riccati]

0.776

13210

\begin{align*} y^{\prime }&=a y^{2}+b \,x^{n} \\ \end{align*}

[[_Riccati, _special]]

28.630

13211

\begin{align*} y^{\prime }&=y^{2}+x^{n -1} a n -a^{2} x^{2 n} \\ \end{align*}

[_Riccati]

53.692

13212

\begin{align*} y^{\prime }&=a y^{2}+b \,x^{2 n}+c \,x^{n -1} \\ \end{align*}

[_Riccati]

1.451

13213

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b \,x^{-n -2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Riccati]

4.618

13214

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b \,x^{m} \\ \end{align*}

[_Riccati]

39.188

13215

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{n +2 m} \\ \end{align*}

[_Riccati]

60.329

13216

\begin{align*} y^{\prime }&=\left (a \,x^{2 n}+b \,x^{n -1}\right ) y^{2}+c \\ \end{align*}

[_Riccati]

7.905

13217

\begin{align*} \left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} x +b_{0}&=0 \\ \end{align*}

[_rational, _Riccati]

1.369

13218

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

3.692

13219

\begin{align*} x^{2} y^{\prime }&=y^{2} x^{2}-a^{2} x^{4}+a \left (1-2 b \right ) x^{2}-b \left (b +1\right ) \\ \end{align*}

[_rational, _Riccati]

4.025

13220

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b \,x^{n}+c \\ \end{align*}

[_rational, _Riccati]

81.127

13221

\begin{align*} \left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0}&=0 \\ \end{align*}

[_rational, _Riccati]

10.352

13222

\begin{align*} x^{4} y^{\prime }&=-y^{2} x^{4}-a^{2} \\ \end{align*}

[_rational, [_Riccati, _special]]

5.801

13223

\begin{align*} a \,x^{2} \left (x -1\right )^{2} \left (y^{\prime }+\lambda y^{2}\right )+b \,x^{2}+c x +s&=0 \\ \end{align*}

[_rational, _Riccati]

1.885

13224

\begin{align*} \left (a \,x^{2}+b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A&=0 \\ \end{align*}

[_rational, _Riccati]

5.336

13225

\begin{align*} x^{n +1} y^{\prime }&=x^{2 n} a y^{2}+c \,x^{m}+d \\ \end{align*}

[_Riccati]

80.228

13226

\begin{align*} \left (a \,x^{n}+b \right ) y^{\prime }&=b y^{2}+a \,x^{-2+n} \\ \end{align*}

[_rational, _Riccati]

6.027

13227

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) \left (y^{\prime }-y^{2}\right )+a n \left (n -1\right ) x^{-2+n}+b m \left (m -1\right ) x^{m -2}&=0 \\ \end{align*}

[_rational, _Riccati]

0.655

13228

\begin{align*} y^{\prime }&=a y^{2}+b y+c x +k \\ \end{align*}

[_Riccati]

31.329

13229

\begin{align*} y^{\prime }&=y^{2}+a \,x^{n} y+a \,x^{n -1} \\ \end{align*}

[_Riccati]

3.048

13230

\begin{align*} y^{\prime }&=y^{2}+a \,x^{n} y+b \,x^{n -1} \\ \end{align*}

[_Riccati]

1.164

13231

\begin{align*} y^{\prime }&=y^{2}+\left (x \alpha +\beta \right ) y+a \,x^{2}+b x +c \\ \end{align*}

[_Riccati]

4.486

13232

\begin{align*} y^{\prime }&=y^{2}+a \,x^{n} y-a b \,x^{n}-b^{2} \\ \end{align*}

[_Riccati]

2.505

13233

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b \,x^{m} y+x^{m} b c -a \,c^{2} x^{n} \\ \end{align*}

[_Riccati]

5.171

13234

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}-a \,x^{n} \left (b \,x^{m}+c \right ) y+b m \,x^{m -1} \\ \end{align*}

[_Riccati]

4.290

13235

\begin{align*} y^{\prime }&=-a n \,x^{n -1} y^{2}+c \,x^{m} \left (a \,x^{n}+b \right ) y-c \,x^{m} \\ \end{align*}

[_Riccati]

2.887

13236

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b \,x^{m} y+c k \,x^{-1+k}-b c \,x^{m +k}-a \,c^{2} x^{n +2 k} \\ \end{align*}

[_Riccati]

6.929

13237

\begin{align*} y^{\prime } x&=a y^{2}+b y+c \,x^{2 b} \\ \end{align*}

[_rational, _Riccati]

2.401

13238

\begin{align*} y^{\prime } x&=a y^{2}+b y+c \,x^{n} \\ \end{align*}

[_rational, _Riccati]

31.400

13239

\begin{align*} y^{\prime } x&=a y^{2}+\left (n +b \,x^{n}\right ) y+c \,x^{2 n} \\ \end{align*}

[_rational, _Riccati]

5.117

13240

\begin{align*} y^{\prime } x&=x y^{2}+a y+b \,x^{n} \\ \end{align*}

[_rational, _Riccati]

0.376

13241

\begin{align*} y^{\prime } x +a_{3} x y^{2}+a_{2} y+a_{1} x +a_{0}&=0 \\ \end{align*}

[_rational, _Riccati]

32.487

13242

\begin{align*} y^{\prime } x&=a \,x^{n} y^{2}+b y+c \,x^{-n} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3.801

13243

\begin{align*} y^{\prime } x&=a \,x^{n} y^{2}+m y-a \,b^{2} x^{n +2 m} \\ \end{align*}

[_rational, _Riccati]

2.622

13244

\begin{align*} y^{\prime } x&=x^{2 n} y^{2}+\left (m -n \right ) y+x^{2 m} \\ \end{align*}

[_rational, _Riccati]

2.651

13245

\begin{align*} y^{\prime } x&=a \,x^{n} y^{2}+b y+c \,x^{m} \\ \end{align*}

[_rational, _Riccati]

0.880

13246

\begin{align*} y^{\prime } x&=x^{2 n} a y^{2}+\left (b \,x^{n}-n \right ) y+c \\ \end{align*}

[_rational, _Riccati]

3.948

13247

\begin{align*} y^{\prime } x&=a \,x^{2 n +m} y^{2}+\left (b \,x^{n +m}-n \right ) y+c \,x^{m} \\ \end{align*}

[_rational, _Riccati]

32.151

13248

\begin{align*} \left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (a_{1} x +b_{1} \right ) y+a_{0} x +b_{0}&=0 \\ \end{align*}

[_rational, _Riccati]

13.003

13249

\begin{align*} \left (a x +c \right ) y^{\prime }&=\alpha \left (a y+b x \right )^{2}+\beta \left (a y+b x \right )-b x +\gamma \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

6.968

13250

\begin{align*} 2 x^{2} y^{\prime }&=2 y^{2}+y x -2 a^{2} x \\ \end{align*}

[_rational, _Riccati]

1.692

13251

\begin{align*} 2 x^{2} y^{\prime }&=2 y^{2}+3 y x -2 a^{2} x \\ \end{align*}

[_rational, _Riccati]

2.902

13252

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b x y+c \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3.059

13253

\begin{align*} x^{2} y^{\prime }&=c \,x^{2} y^{2}+\left (a \,x^{2}+b x \right ) y+\alpha \,x^{2}+\beta x +\gamma \\ \end{align*}

[_rational, _Riccati]

30.799

13254

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b x y+c \,x^{n}+s \\ \end{align*}

[_rational, _Riccati]

0.503

13255

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b x y+c \,x^{2 n}+s \,x^{n} \\ \end{align*}

[_rational, _Riccati]

1.203

13256

\begin{align*} x^{2} y^{\prime }&=c \,x^{2} y^{2}+\left (a \,x^{n}+b \right ) x y+\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \\ \end{align*}

[_rational, _Riccati]

25.765

13257

\begin{align*} x^{2} y^{\prime }&=\left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y^{2}+\left (a \,x^{n}+b \right ) x y+c \,x^{2} \\ \end{align*}

[_rational, _Riccati]

13.326

13258

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+\lambda \left (1-2 y x +y^{2}\right )&=0 \\ \end{align*}

[_rational, _Riccati]

1.505

13259

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\frac {b \left (a +\beta \right )}{\alpha }&=0 \\ \end{align*}

[_rational, _Riccati]

463.421

13260

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\gamma &=0 \\ \end{align*}

[_rational, _Riccati]

538.798

13261

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime }+y^{2}-2 y x +\left (1-a \right ) x^{2}-b&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

3.536

13262

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime }&=y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

7.842

13263

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime }&=y^{2}+\left (a x +\mu \right ) y-\lambda ^{2} x^{2}+\lambda \left (b -\mu \right ) x +\lambda c \\ \end{align*}

[_rational, _Riccati]

73.844

13264

\begin{align*} \left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime }&=y^{2}+\left (a_{1} x +b_{1} \right ) y-\lambda \left (\lambda +a_{1} -a_{2} \right ) x^{2}+\lambda \left (b_{2} -b_{1} \right ) x +\lambda c_{2} \\ \end{align*}

[_rational, _Riccati]

112.030

13265

\begin{align*} \left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime }&=y^{2}+\left (a_{1} x +b_{1} \right ) y+a_{0} x^{2}+b_{0} x +c_{0} \\ \end{align*}

[_rational, _Riccati]

77.736

13266

\begin{align*} \left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

8.698

13267

\begin{align*} \left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b_{1} x +a_{1} \right ) y+a_{0}&=0 \\ \end{align*}

[_rational, _Riccati]

25.053

13268

\begin{align*} x^{3} y^{\prime }&=a \,x^{3} y^{2}+\left (b \,x^{2}+c \right ) y+s x \\ \end{align*}

[_rational, _Riccati]

61.177

13269

\begin{align*} x^{3} y^{\prime }&=a \,x^{3} y^{2}+x \left (b x +c \right ) y+x \alpha +\beta \\ \end{align*}

[_rational, _Riccati]

24.248

13270

\begin{align*} x \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b \,x^{2}+c \right ) y+s x&=0 \\ \end{align*}

[_rational, _Riccati]

2.826

13271

\begin{align*} x^{2} \left (a +x \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y+x \alpha +\beta &=0 \\ \end{align*}

[_rational, _Riccati]

7.714

13272

\begin{align*} \left (a \,x^{2}+b x +e \right ) \left (-y+y^{\prime } x \right )-y^{2}+x^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.325

13273

\begin{align*} x^{2} \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b \,x^{2}+c \right ) y+s&=0 \\ \end{align*}

[_rational, _Riccati]

7.924

13274

\begin{align*} x^{n +1} y^{\prime }&=x^{2 n} a y^{2}+b \,x^{n} y+c \,x^{m}+d \\ \end{align*}

[_Riccati]

0.915

13275

\begin{align*} x \left (a \,x^{k}+b \right ) y^{\prime }&=\alpha \,x^{n} y^{2}+\left (\beta -a n \,x^{k}\right ) y+\gamma \,x^{-n} \\ \end{align*}

[_rational, _Riccati]

43.566

13276

\begin{align*} x^{2} \left (a \,x^{n}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (p \,x^{n}+q \right ) x y+r \,x^{n}+s&=0 \\ \end{align*}

[_rational, _Riccati]

8.921

13277

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }&=c y^{2}-b \,x^{m -1} y+a \,x^{-2+n} \\ \end{align*}

[_rational, _Riccati]

1.215

13278

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }&=a \,x^{-2+n} y^{2}+b \,x^{m -1} y+c \\ \end{align*}

[_rational, _Riccati]

89.496

13279

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }&=\alpha \,x^{k} y^{2}+\beta \,x^{s} y-\alpha \,\lambda ^{2} x^{k}+\beta \lambda \,x^{s} \\ \end{align*}

[_rational, _Riccati]

2.227

13280

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) \left (-y+y^{\prime } x \right )+s \,x^{k} \left (y^{2}-\lambda \,x^{2}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

37.729

13281

\begin{align*} y^{\prime }&=a y^{2}+b \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Riccati]

16.864

13282

\begin{align*} y^{\prime }&=y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \\ \end{align*}

[_Riccati]

2.908

13283

\begin{align*} y^{\prime }&=\sigma y^{2}+a +b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \lambda x} \\ \end{align*}

[_Riccati]

4.749

13284

\begin{align*} y^{\prime }&=\sigma y^{2}+a y+b \,{\mathrm e}^{x}+c \\ \end{align*}

[_Riccati]

29.149

13285

\begin{align*} y^{\prime }&=y^{2}+b y+a \left (\lambda -b \right ) {\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \\ \end{align*}

[_Riccati]

3.327

13286

\begin{align*} y^{\prime }&=y^{2}+a \,{\mathrm e}^{\lambda x} y-a b \,{\mathrm e}^{\lambda x}-b^{2} \\ \end{align*}

[_Riccati]

3.041

13287

\begin{align*} y^{\prime }&=y^{2}+a \,{\mathrm e}^{2 \lambda x} \left ({\mathrm e}^{\lambda x}+b \right )^{n}-\frac {\lambda ^{2}}{4} \\ \end{align*}

[_Riccati]

40.002

13288

\begin{align*} y^{\prime }&=y^{2}+a \,{\mathrm e}^{8 \lambda x}+b \,{\mathrm e}^{6 \lambda x}+c \,{\mathrm e}^{4 \lambda x}-\lambda ^{2} \\ \end{align*}

[_Riccati]

1.240

13289

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{x k} y^{2}+b \,{\mathrm e}^{s x} \\ \end{align*}

[_Riccati]

0.848

13290

\begin{align*} y^{\prime }&=b \,{\mathrm e}^{\mu x} y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (2 \lambda +\mu \right ) x} \\ \end{align*}

[_Riccati]

90.762

13291

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

67.860

13292

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\mu x} y^{2}+\lambda y-a \,b^{2} {\mathrm e}^{\left (2 \lambda +\mu \right ) x} \\ \end{align*}

[_Riccati]

0.415

13293

\begin{align*} y^{\prime }&={\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y+a \lambda \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \\ \end{align*}

[_Riccati]

0.894

13294

\begin{align*} y^{\prime }&=-\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y-a \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \\ \end{align*}

[_Riccati]

0.684

13295

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\mu x} y^{2}+a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x} y-b \lambda \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Riccati]

29.698

13296

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{x k} y^{2}+b y+c \,{\mathrm e}^{s x}+d \,{\mathrm e}^{-x k} \\ \end{align*}

[_Riccati]

1.240

13297

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\left (2 \lambda +\mu \right ) x} y^{2}+\left (b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}-\lambda \right ) y+c \,{\mathrm e}^{\mu x} \\ \end{align*}

[_Riccati]

0.948

13298

\begin{align*} y^{\prime }&={\mathrm e}^{\mu x} \left (y-b \,{\mathrm e}^{\lambda x}\right )^{2}+b \lambda \,{\mathrm e}^{\lambda x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

0.644

13299

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }&=y^{2}+k \,{\mathrm e}^{\nu x} y-m^{2}+k m \,{\mathrm e}^{\nu x} \\ \end{align*}

[_Riccati]

22.509

13300

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} {\mathrm e}^{\lambda x}+b \,\mu ^{2} {\mathrm e}^{\mu x}&=0 \\ \end{align*}

[_Riccati]

0.612