# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.083 |
|
\[
{}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.077 |
|
\[
{}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.082 |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.086 |
|
\[
{}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.106 |
|
\[
{}y^{\prime \prime }+\alpha y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.971 |
|
\[
{}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.092 |
|
\[
{}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.085 |
|
\[
{}y^{\prime }-i y = 0
\] |
[_quadrature] |
✓ |
1.072 |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.169 |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
0.591 |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.173 |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x}
\] |
[[_high_order, _missing_y]] |
✓ |
0.167 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.504 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.256 |
|
\[
{}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.255 |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.145 |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.157 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.138 |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
0.182 |
|
\[
{}y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
0.265 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.210 |
|
\[
{}y^{\prime }+2 y = 4
\] |
[_quadrature] |
✓ |
0.288 |
|
\[
{}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.227 |
|
\[
{}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.230 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.234 |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
0.250 |
|
\[
{}y^{\prime } = {\mathrm e}^{x}
\] |
[_quadrature] |
✓ |
0.369 |
|
\[
{}y^{\prime }-y = 2 \,{\mathrm e}^{x}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.388 |
|
\[
{}y^{\prime \prime }-9 y = x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.280 |
|
\[
{}y^{\prime \prime }+9 y = x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.326 |
|
\[
{}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.546 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.293 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.446 |
|
\[
{}y^{\prime }-2 y = 6
\] |
[_quadrature] |
✓ |
0.401 |
|
\[
{}y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.403 |
|
\[
{}y^{\prime \prime }+9 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.268 |
|
\[
{}y^{\prime \prime }+9 y = 18 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.306 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.240 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.272 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.299 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.423 |
|
\[
{}y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.598 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.492 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (x -1\right )^{2} & 1\le x \end {array}\right .
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.550 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.620 |
|
\[
{}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.118 |
|
\[
{}y^{\prime \prime }-4 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.740 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.689 |
|
\[
{}y^{\prime }+3 y = \delta \left (x -2\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.538 |
|
\[
{}y^{\prime }-3 y = \delta \left (x -1\right )+2 \operatorname {Heaviside}\left (x -2\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.639 |
|
\[
{}y^{\prime \prime }+9 y = \delta \left (x -\pi \right )+\delta \left (x -3 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.565 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 \delta \left (x -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.440 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (x \right )+2 \delta \left (x -\pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.079 |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (x \right ) \delta \left (x -\pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.371 |
|
\[
{}y^{\prime \prime }+a^{2} y = \delta \left (x -\pi \right ) f \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.406 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.444 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}-2 y_{2} \\ y_{2}^{\prime }=y_{1}+3 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.497 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+2 y_{2}+x -1 \\ y_{2}^{\prime }=3 y_{1}+2 y_{2}-5 x -2 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.587 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=\frac {2 y_{1}}{x}-\frac {y_{2}}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}} \\ y_{2}^{\prime }=2 y_{1}+1-6 x \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.100 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.062 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}-2 y_{2} \\ y_{2}^{\prime }=y_{2}-y_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.741 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.065 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.064 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }=\frac {y_{1}}{\left (x -2\right )^{2}} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.064 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }=\frac {y_{1}}{\left (x -2\right )^{2}} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.063 |
|
\(\left [\begin {array}{cc} -2 & -4 \\ 1 & 3 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.142 |
|
\(\left [\begin {array}{cc} -3 & -1 \\ 2 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.188 |
|
\(\left [\begin {array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.278 |
|
\(\left [\begin {array}{ccc} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.185 |
|
\(\left [\begin {array}{ccc} 7 & -1 & 6 \\ -10 & 4 & -12 \\ -2 & 1 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.242 |
|
\(\left [\begin {array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.233 |
|
\(\left [\begin {array}{cccc} 1 & 3 & 5 & 7 \\ 2 & 6 & 10 & 14 \\ 3 & 9 & 15 & 21 \\ 6 & 18 & 30 & 42 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.257 |
|
\(\left [\begin {array}{ccccc} 1 & 3 & 5 & 2 & 4 \\ 5 & 2 & 4 & 1 & 3 \\ 4 & 1 & 3 & 5 & 2 \\ 3 & 5 & 2 & 4 & 1 \\ 2 & 4 & 1 & 3 & 5 \end {array}\right ]\) |
Eigenvectors |
✓ |
4.451 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2}+5 \,{\mathrm e}^{x} \\ y_{2}^{\prime }=y_{1}+4 y_{2}-2 \,{\mathrm e}^{-x} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.220 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}-2 y_{1}+\sin \left (2 x \right ) \\ y_{2}^{\prime }=-3 y_{1}+y_{2}-2 \cos \left (3 x \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
2.564 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{2} \\ y_{2}^{\prime }=3 y_{1} \\ y_{3}^{\prime }=2 y_{3}-y_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.594 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1} x -x^{2} y_{2}+4 x \\ y_{2}^{\prime }={\mathrm e}^{x} y_{1}+3 \,{\mathrm e}^{-x} y_{2}-\cos \left (3 x \right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.064 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.412 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2}+4 x -2 \\ y_{2}^{\prime }=y_{1}-2 y_{2}+3 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.473 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x} \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.063 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.062 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}+y_{2}-2 y_{3} \\ y_{2}^{\prime }=3 y_{2}-2 y_{3} \\ y_{3}^{\prime }=3 y_{1}+y_{2}-3 y_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.464 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-5 y_{2}-5 y_{3} \\ y_{2}^{\prime }=-y_{1}+4 y_{2}+2 y_{3} \\ y_{3}^{\prime }=3 y_{1}-5 y_{2}-3 y_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.602 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}+6 y_{2}+6 y_{3} \\ y_{2}^{\prime }=y_{1}+3 y_{2}+2 y_{3} \\ y_{3}^{\prime }=-y_{1}-4 y_{2}-3 y_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.481 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+2 y_{2}-3 y_{3} \\ y_{2}^{\prime }=-3 y_{1}+4 y_{2}-2 y_{3} \\ y_{3}^{\prime }=2 y_{1}+y_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.743 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{1}-y_{2}+y_{3} \\ y_{2}^{\prime }=-y_{1}-2 y_{2}-y_{3} \\ y_{3}^{\prime }=y_{1}-y_{2}-2 y_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.336 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+y_{2}+2 y_{3} \\ y_{2}^{\prime }=y_{1}+y_{2}+2 y_{3} \\ y_{3}^{\prime }=2 y_{1}+2 y_{2}+4 y_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.367 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}+y_{2} \\ y_{2}^{\prime }=-y_{1}+2 y_{2} \\ y_{3}^{\prime }=3 y_{3}-4 y_{4} \\ y_{4}^{\prime }=4 y_{3}+3 y_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.825 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=-3 y_{1}+2 y_{3} \\ y_{3}^{\prime }=y_{4} \\ y_{4}^{\prime }=2 y_{1}-5 y_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
4.462 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+2 y_{2} \\ y_{2}^{\prime }=3 y_{2}-2 y_{1} \\ y_{3}^{\prime }=y_{3} \\ y_{4}^{\prime }=2 y_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.596 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}+y_{4} \\ y_{2}^{\prime }=y_{1}-y_{3} \\ y_{3}^{\prime }=y_{4} \\ y_{4}^{\prime }=y_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.458 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=-x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.395 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=-2 x+3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.380 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=2 x-3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.683 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=5 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.528 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=-2 x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.453 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=2 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.454 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-5 x-y+2 \\ y^{\prime }=3 x-y-3 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.620 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-2 y-6 \\ y^{\prime }=4 x-y+2 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.894 |
|