2.2.140 Problems 13901 to 14000

Table 2.293: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

13901

\begin{align*} x^{n} y^{\prime \prime }+c \left (a x +b \right )^{n -4} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.436

13902

\begin{align*} x^{n} y^{\prime \prime }+a x y^{\prime }-\left (b^{2} x^{n}+2 b \,x^{n -1}+a b x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.287

13903

\begin{align*} x^{n} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.069

13904

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n -1}+b x \right ) y^{\prime }+\left (-1+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.950

13905

\begin{align*} x^{n} y^{\prime \prime }+\left (2 x^{n -1}+a \,x^{2}+b x \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.496

13906

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{n}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.323

13907

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n}-x^{n -1}+a b x +b \right ) y^{\prime }+a^{2} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

55.085

13908

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n +m}+1\right ) y^{\prime }+a \,x^{m} \left (1+m \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.285

13909

\begin{align*} \left (a \,x^{n}+b \right ) y^{\prime \prime }+\left (c \,x^{n}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{n}+d -b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.661

13910

\begin{align*} \left (a \,x^{n}+b x +c \right ) y^{\prime \prime }&=a n \left (n -1\right ) x^{-2+n} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.990

13911

\begin{align*} x \left (x^{n}+1\right ) y^{\prime \prime }+\left (\left (a -b \right ) x^{n}+a -n \right ) y^{\prime }+b \left (1-a \right ) x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.546

13912

\begin{align*} x \left (x^{2 n}+a \right ) y^{\prime \prime }+\left (x^{2 n}+a -a n \right ) y^{\prime }-b^{2} x^{2 n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

87.742

13913

\begin{align*} x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a^{2} \left (n +1\right ) x^{2 n}+n -1\right ) y^{\prime }-\nu \left (\nu +1\right ) a^{2} n^{2} x^{2 n} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

142.587

13914

\begin{align*} x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a p \,x^{n}+q \right ) y^{\prime }+\left (a r \,x^{n}+s \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

166.926

13915

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }-b \,x^{-2+n} \left (\left (b -1\right ) x^{n}+a \left (n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.824

13916

\begin{align*} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) \left (c \,x^{n}+d \right ) y^{\prime }+n \left (-a d +b c \right ) x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.697

13917

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{-2+n} \left (b \,x^{m +1}+a n -a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

60.676

13918

\begin{align*} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+c \,x^{m} \left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{m}-x^{n -1} a n -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.040

13919

\begin{align*} x^{2} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (n +1\right ) x \left (a^{2} x^{2 n}-b^{2}\right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

247.144

13920

\begin{align*} \left (a \,x^{n +1}+b \,x^{n}+c \right )^{2} y^{\prime \prime }+\left (\alpha \,x^{n}+\beta \,x^{n -1}+\gamma \right ) y^{\prime }+\left (n \left (-a n -a +\alpha \right ) x^{n -1}+\left (n -1\right ) \left (-b n +\beta \right ) x^{-2+n}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

386.540

13921

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda -x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

46.340

13922

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda ^{2}-x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

103.228

13923

\begin{align*} 2 \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+a n \,x^{n -1} b m \,x^{m -1} y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

139.171

13924

\begin{align*} \left (a \,x^{n}+b \right )^{m +1} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }-a n m \,x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9.464

13925

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.325

13926

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{x}-b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.380

13927

\begin{align*} y^{\prime \prime }+a \left (\lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.892

13928

\begin{align*} y^{\prime \prime }-\left (a^{2} {\mathrm e}^{2 x}+a \left (2 b +1\right ) {\mathrm e}^{x}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.086

13929

\begin{align*} y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.959

13930

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{4 \lambda x}+b \,{\mathrm e}^{3 \lambda x}+c \,{\mathrm e}^{2 \lambda x}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.318

13931

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.385

13932

\begin{align*} b \,{\mathrm e}^{2 a x} y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.500

13933

\begin{align*} y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13.357

13934

\begin{align*} y^{\prime \prime }+a y^{\prime }+\left (b \,{\mathrm e}^{\lambda x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.514

13935

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{3 \lambda x}+b \,{\mathrm e}^{2 \lambda x}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.053

13936

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.920

13937

\begin{align*} y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.888

13938

\begin{align*} y^{\prime \prime }+\left (a +b \right ) {\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\lambda x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.212

13939

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y^{\prime }-b \,{\mathrm e}^{\mu x} \left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+\mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.882

13940

\begin{align*} y^{\prime \prime }+2 k \,{\mathrm e}^{\mu x} y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 \mu x}+k \mu \,{\mathrm e}^{\mu x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.921

13941

\begin{align*} y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.156

13942

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x}+\lambda \right ) y^{\prime }-a \lambda \,{\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.818

13943

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+b \,{\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.970

13944

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+c \left (a \,{\mathrm e}^{\lambda x}+b -c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.277

13945

\begin{align*} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.018

13946

\begin{align*} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{\lambda x}+b -3 \lambda \right ) y^{\prime }+a^{2} \lambda \left (b -\lambda \right ) {\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.123

13947

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+c \,{\mathrm e}^{\mu x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.546

13948

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a \left (b +\lambda \right ) {\mathrm e}^{\lambda x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.788

13949

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b -\lambda \right ) y^{\prime }+\left (c \,{\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+b^{2}-b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.234

13950

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{x}+b \right ) y^{\prime }+\left (c \left (a -c \right ) {\mathrm e}^{2 x}+\left (a k +b c -2 c k +c \right ) {\mathrm e}^{x}+k \left (b -k \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.281

13951

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (\alpha \,{\mathrm e}^{2 \lambda x}+\beta \,{\mathrm e}^{\lambda x}+\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.256

13952

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{2 \mu x}+c \,{\mathrm e}^{\mu x}+k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.681

13953

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \mu x}+d \,{\mathrm e}^{\mu x}+k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.868

13954

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}\right ) y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\mu x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.711

13955

\begin{align*} y^{\prime \prime }+{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{2 \mu x}+b \right ) y^{\prime }+\mu \left ({\mathrm e}^{\lambda x} \left (b -a \,{\mathrm e}^{2 \mu x}\right )-\mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.416

13956

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+{\mathrm e}^{\mu x} b \mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

5.476

13957

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+{\mathrm e}^{\lambda x} a c +{\mathrm e}^{\mu x} b \mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.465

13958

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b \,{\mathrm e}^{\mu x}-\lambda \right ) y^{\prime }+\left (a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+c \,{\mathrm e}^{2 \lambda x}+{\mathrm e}^{2 \mu x} b^{2}+b \left (\mu -\lambda \right ) {\mathrm e}^{\mu x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.568

13959

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+a \lambda \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}-2 \lambda \right ) y^{\prime }+a^{2} b \lambda \,{\mathrm e}^{\left (2 \lambda +\mu \right ) x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.839

13960

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{b \,x^{n}} y^{\prime }+c \left (a \,{\mathrm e}^{b \,x^{n}}-c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.008

13961

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }-a \,\lambda ^{2} {\mathrm e}^{\lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.391

13962

\begin{align*} \left (a^{2} {\mathrm e}^{2 \lambda x}+b \right ) y^{\prime \prime }-b \lambda y^{\prime }-a^{2} \lambda ^{2} k^{2} {\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

44.083

13963

\begin{align*} 2 \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+a \lambda \,{\mathrm e}^{\lambda x} y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14.974

13964

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+k \left (\left (-a k +c \right ) {\mathrm e}^{\lambda x}+d -b k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.156

13965

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+\left (n \,{\mathrm e}^{\lambda x}+m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.265

13966

\begin{align*} \frac {2 y x +1}{y}+\frac {\left (-x +y\right ) y^{\prime }}{y^{2}}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

32.885

13967

\begin{align*} \frac {y^{2}-2 x^{2}}{-x^{3}+x y^{2}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

52.958

13968

\begin{align*} \frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

45.748

13969

\begin{align*} y^{\prime } x +x +y&=0 \\ \end{align*}

[_linear]

5.069

13970

\begin{align*} 6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.128

13971

\begin{align*} \sec \left (x \right ) \cos \left (y\right )^{2}-\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

9.747

13972

\begin{align*} \left (x +1\right ) y^{2}-x^{3} y^{\prime }&=0 \\ \end{align*}

[_separable]

3.519

13973

\begin{align*} \left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right )&=0 \\ \end{align*}

[_separable]

5.388

13974

\begin{align*} \sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

4.918

13975

\begin{align*} {\mathrm e}^{\frac {y}{x}} x +y-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

7.330

13976

\begin{align*} 2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

26.574

13977

\begin{align*} x^{2} y^{\prime }+y^{2}-y x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.544

13978

\begin{align*} 2 x^{2} y+y^{3}-x^{3} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

108.109

13979

\begin{align*} y^{3}+x^{3} y^{\prime }&=0 \\ \end{align*}

[_separable]

17.776

13980

\begin{align*} x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

6.613

13981

\begin{align*} \left (x +y+1\right ) y^{\prime }+1+4 x +3 y&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

37.281

13982

\begin{align*} 4 x -y+2+\left (x +y+3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

35.809

13983

\begin{align*} 2 x +y-\left (4 x +2 y-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17.133

13984

\begin{align*} y+2 x y^{2}-x^{2} y^{3}+2 x^{2} y y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

0.452

13985

\begin{align*} 2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

49.435

13986

\begin{align*} y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17.422

13987

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\sec \left (x \right ) \\ \end{align*}

[_linear]

2.395

13988

\begin{align*} y^{\prime } x +\left (x +1\right ) y&={\mathrm e}^{x} \\ \end{align*}

[_linear]

2.374

13989

\begin{align*} y^{\prime }-\frac {2 y}{x +1}&=\left (x +1\right )^{3} \\ \end{align*}

[_linear]

3.736

13990

\begin{align*} \left (x^{3}+x \right ) y^{\prime }+4 x^{2} y&=2 \\ \end{align*}

[_linear]

2.103

13991

\begin{align*} x^{2} y^{\prime }+\left (1-2 x \right ) y&=x^{2} \\ \end{align*}

[_linear]

3.205

13992

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-2 \left (x +1\right ) y&=y^{{5}/{2}} \\ \end{align*}

[_rational, _Bernoulli]

3.822

13993

\begin{align*} y y^{\prime }+x y^{2}&=x \\ \end{align*}

[_separable]

4.565

13994

\begin{align*} y^{\prime } \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )&=\sin \left (x \right ) \\ \end{align*}

[_separable]

32.222

13995

\begin{align*} 4 y^{\prime } x +3 y+{\mathrm e}^{x} x^{4} y^{5}&=0 \\ \end{align*}

[_Bernoulli]

3.576

13996

\begin{align*} y^{\prime }-\frac {1+y}{x +1}&=\sqrt {1+y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

42.499

13997

\begin{align*} x^{4} y \left (3 y+2 y^{\prime } x \right )+x^{2} \left (4 y+3 y^{\prime } x \right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

49.369

13998

\begin{align*} y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right )&=0 \\ \end{align*}

[_separable]

0.147

13999

\begin{align*} 2 x^{3} y-y^{2}-\left (2 x^{4}+y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

77.063

14000

\begin{align*} x^{2} y^{\prime }+y^{2}-y x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.594