2.2.147 Problems 14601 to 14700

Table 2.295: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14601

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

[[_2nd_order, _missing_y]]

2.019

14602

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.345

14603

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.866

14604

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -200 \]

[[_2nd_order, _missing_x]]

1.268

14605

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.892

14606

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

1.010

14607

\[ {}y^{\prime \prime }+9 y = 9 x^{4}-9 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.657

14608

\[ {}y^{\prime \prime }+9 y = x^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.831

14609

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.937

14610

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.297

14611

\[ {}y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.682

14612

\[ {}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

1.727

14613

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.629

14614

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.986

14615

\[ {}y^{\prime \prime }+9 y = 39 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.453

14616

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.949

14617

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

[[_2nd_order, _missing_x]]

1.520

14618

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

1.599

14619

\[ {}y^{\prime \prime }+9 y = 3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.797

14620

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.973

14621

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.439

14622

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.379

14623

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.970

14624

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.991

14625

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 24 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

10.736

14626

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 8 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

7.928

14627

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.715

14628

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

9.648

14629

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 100 \]

[[_2nd_order, _missing_x]]

2.037

14630

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

7.464

14631

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8 \]

[[_2nd_order, _with_linear_symmetries]]

9.113

14632

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.974

14633

\[ {}y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.504

14634

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.450

14635

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

21.667

14636

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.829

14637

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.219

14638

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.118

14639

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{-8 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.004

14640

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.939

14641

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.106

14642

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.816

14643

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.875

14644

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{4 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

28.996

14645

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{2 x} \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

22.530

14646

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = x^{3} \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

26.866

14647

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{2} {\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.990

14648

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.003

14649

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x} \]

[[_high_order, _missing_y]]

0.107

14650

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right ) \]

[[_high_order, _missing_y]]

0.135

14651

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x} \]

[[_high_order, _missing_y]]

0.113

14652

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x \]

[[_high_order, _missing_y]]

0.106

14653

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

0.108

14654

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.148

14655

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.113

14656

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \]

[[_high_order, _missing_y]]

0.146

14657

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} \sin \left (3 x \right ) \]

[[_high_order, _missing_y]]

0.714

14658

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_high_order, _missing_y]]

0.497

14659

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.196

14660

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.601

14661

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.176

14662

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.145

14663

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.888

14664

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.247

14665

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15.594

14666

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.385

14667

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = \frac {5}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

1.441

14668

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {50}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

1.802

14669

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.834

14670

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.903

14671

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 4 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.968

14672

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = \frac {10}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.933

14673

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 6 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.661

14674

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 64 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.813

14675

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

1.804

14676

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.852

14677

\[ {}y^{\prime \prime }+4 y = \csc \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.533

14678

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.898

14679

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.066

14680

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.047

14681

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.888

14682

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 12 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.779

14683

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.609

14684

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.767

14685

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.218

14686

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.707

14687

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.900

14688

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.436

14689

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = \frac {10}{x} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.260

14690

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.571

14691

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

0.106

14692

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

0.233

14693

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = {\mathrm e}^{-x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

0.342

14694

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

1.023

14695

\[ {}y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.531

14696

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y = 12 x \sin \left (x^{2}\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.366

14697

\[ {}y^{\prime \prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

1.739

14698

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

0.750

14699

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.877

14700

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

1.971