# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime } = \frac {y+1}{1+t}
\] |
[_separable] |
✓ |
1.839 |
|
\[
{}y^{\prime } = t^{2} y^{2}
\] |
[_separable] |
✓ |
2.008 |
|
\[
{}y^{\prime } = t^{4} y
\] |
[_separable] |
✓ |
1.625 |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
1.214 |
|
\[
{}y^{\prime } = 2-y
\] |
[_quadrature] |
✓ |
1.162 |
|
\[
{}y^{\prime } = {\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
1.283 |
|
\[
{}x^{\prime } = 1+x^{2}
\] |
[_quadrature] |
✓ |
1.198 |
|
\[
{}y^{\prime } = 2 t y^{2}+3 y^{2}
\] |
[_separable] |
✓ |
1.731 |
|
\[
{}y^{\prime } = \frac {t}{y}
\] |
[_separable] |
✓ |
3.463 |
|
\[
{}y^{\prime } = \frac {t}{t^{2} y+y}
\] |
[_separable] |
✓ |
1.428 |
|
\[
{}y^{\prime } = t y^{{1}/{3}}
\] |
[_separable] |
✓ |
3.352 |
|
\[
{}y^{\prime } = \frac {1}{2 y+1}
\] |
[_quadrature] |
✓ |
1.185 |
|
\[
{}y^{\prime } = \frac {2 y+1}{t}
\] |
[_separable] |
✓ |
2.078 |
|
\[
{}y^{\prime } = y \left (1-y\right )
\] |
[_quadrature] |
✓ |
1.878 |
|
\[
{}y^{\prime } = \frac {4 t}{1+3 y^{2}}
\] |
[_separable] |
✓ |
1.187 |
|
\[
{}v^{\prime } = t^{2} v-2-2 v+t^{2}
\] |
[_separable] |
✓ |
1.598 |
|
\[
{}y^{\prime } = \frac {1}{t y+t +y+1}
\] |
[_separable] |
✓ |
1.470 |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}}
\] |
[_separable] |
✓ |
1.602 |
|
\[
{}y^{\prime } = y^{2}-4
\] |
[_quadrature] |
✓ |
1.557 |
|
\[
{}w^{\prime } = \frac {w}{t}
\] |
[_separable] |
✓ |
1.610 |
|
\[
{}y^{\prime } = \sec \left (y\right )
\] |
[_quadrature] |
✓ |
1.148 |
|
\[
{}x^{\prime } = -t x
\] |
[_separable] |
✓ |
2.269 |
|
\[
{}y^{\prime } = t y
\] |
[_separable] |
✓ |
1.954 |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
1.468 |
|
\[
{}y^{\prime } = t^{2} y^{3}
\] |
[_separable] |
✓ |
4.230 |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
1.471 |
|
\[
{}y^{\prime } = \frac {t}{y-t^{2} y}
\] |
[_separable] |
✓ |
5.243 |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
1.458 |
|
\[
{}y^{\prime } = t y^{2}+2 y^{2}
\] |
[_separable] |
✓ |
2.082 |
|
\[
{}x^{\prime } = \frac {t^{2}}{x+t^{3} x}
\] |
[_separable] |
✓ |
2.739 |
|
\[
{}y^{\prime } = \frac {1-y^{2}}{y}
\] |
[_quadrature] |
✓ |
7.385 |
|
\[
{}y^{\prime } = \left (1+y^{2}\right ) t
\] |
[_separable] |
✓ |
2.653 |
|
\[
{}y^{\prime } = \frac {1}{2 y+3}
\] |
[_quadrature] |
✓ |
1.685 |
|
\[
{}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2}
\] |
[_separable] |
✓ |
2.084 |
|
\[
{}y^{\prime } = \frac {y^{2}+5}{y}
\] |
[_quadrature] |
✓ |
14.966 |
|
\[
{}y^{\prime } = t^{2}+t
\] |
[_quadrature] |
✓ |
0.465 |
|
\[
{}y^{\prime } = t^{2}+1
\] |
[_quadrature] |
✓ |
0.449 |
|
\[
{}y^{\prime } = 1-2 y
\] |
[_quadrature] |
✓ |
1.248 |
|
\[
{}y^{\prime } = 4 y^{2}
\] |
[_quadrature] |
✓ |
1.292 |
|
\[
{}y^{\prime } = 2 y \left (1-y\right )
\] |
[_quadrature] |
✓ |
2.091 |
|
\[
{}y^{\prime } = y+t +1
\] |
[[_linear, ‘class A‘]] |
✓ |
1.207 |
|
\[
{}y^{\prime } = 3 y \left (1-y\right )
\] |
[_quadrature] |
✓ |
2.480 |
|
\[
{}y^{\prime } = 2 y-t
\] |
[[_linear, ‘class A‘]] |
✓ |
1.494 |
|
\[
{}y^{\prime } = \left (y+\frac {1}{2}\right ) \left (y+t \right )
\] |
[_Riccati] |
✓ |
1.583 |
|
\[
{}y^{\prime } = \left (1+t \right ) y
\] |
[_separable] |
✓ |
2.099 |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
3.987 |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
3.956 |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
4.317 |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
3.957 |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
3.964 |
|
\[
{}y^{\prime } = y^{2}+y
\] |
[_quadrature] |
✓ |
1.819 |
|
\[
{}y^{\prime } = y^{2}-y
\] |
[_quadrature] |
✓ |
1.681 |
|
\[
{}y^{\prime } = y^{3}+y^{2}
\] |
[_quadrature] |
✓ |
4.322 |
|
\[
{}y^{\prime } = -t^{2}+2
\] |
[_quadrature] |
✓ |
0.441 |
|
\[
{}y^{\prime } = t y+t y^{2}
\] |
[_separable] |
✓ |
2.289 |
|
\[
{}y^{\prime } = t^{2}+t^{2} y
\] |
[_separable] |
✓ |
1.441 |
|
\[
{}y^{\prime } = t +t y
\] |
[_separable] |
✓ |
1.391 |
|
\[
{}y^{\prime } = t^{2}-2
\] |
[_quadrature] |
✓ |
0.448 |
|
\[
{}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
1.501 |
|
\[
{}\theta ^{\prime } = 2
\] |
[_quadrature] |
✓ |
0.744 |
|
\[
{}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
1.431 |
|
\[
{}v^{\prime } = -\frac {v}{R C}
\] |
[_quadrature] |
✓ |
0.819 |
|
\[
{}v^{\prime } = \frac {K -v}{R C}
\] |
[_quadrature] |
✓ |
0.696 |
|
\[
{}v^{\prime } = 2 V \left (t \right )-2 v
\] |
[[_linear, ‘class A‘]] |
✓ |
1.145 |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
1.485 |
|
\[
{}y^{\prime } = t -y^{2}
\] |
[[_Riccati, _special]] |
✓ |
1.870 |
|
\[
{}y^{\prime } = y^{2}-4 t
\] |
[[_Riccati, _special]] |
✓ |
1.934 |
|
\[
{}y^{\prime } = \sin \left (y\right )
\] |
[_quadrature] |
✓ |
5.750 |
|
\[
{}w^{\prime } = \left (3-w\right ) \left (w+1\right )
\] |
[_quadrature] |
✓ |
2.028 |
|
\[
{}w^{\prime } = \left (3-w\right ) \left (w+1\right )
\] |
[_quadrature] |
✓ |
2.001 |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {2}{y}}
\] |
[_quadrature] |
✓ |
3.903 |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {2}{y}}
\] |
[_quadrature] |
✓ |
3.955 |
|
\[
{}y^{\prime } = y^{2}-y^{3}
\] |
[_quadrature] |
✓ |
3.933 |
|
\[
{}y^{\prime } = 2 y^{3}+t^{2}
\] |
[_Abel] |
✗ |
0.686 |
|
\[
{}y^{\prime } = \sqrt {y}
\] |
[_quadrature] |
✓ |
1.080 |
|
\[
{}y^{\prime } = 2-y
\] |
[_quadrature] |
✓ |
1.396 |
|
\[
{}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
2.537 |
|
\[
{}y^{\prime } = y \left (y-1\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
320.033 |
|
\[
{}y^{\prime } = y \left (y-1\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
359.671 |
|
\[
{}y^{\prime } = y \left (y-1\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
372.846 |
|
\[
{}y^{\prime } = y \left (y-1\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
369.155 |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
1.283 |
|
\[
{}y^{\prime } = y^{3}
\] |
[_quadrature] |
✓ |
2.099 |
|
\[
{}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )}
\] |
[_separable] |
✓ |
1.948 |
|
\[
{}y^{\prime } = \frac {1}{\left (y+2\right )^{2}}
\] |
[_quadrature] |
✓ |
1.966 |
|
\[
{}y^{\prime } = \frac {t}{y-2}
\] |
[_separable] |
✓ |
3.112 |
|
\[
{}y^{\prime } = 3 y \left (y-2\right )
\] |
[_quadrature] |
✓ |
2.266 |
|
\[
{}y^{\prime } = 3 y \left (y-2\right )
\] |
[_quadrature] |
✓ |
2.343 |
|
\[
{}y^{\prime } = 3 y \left (y-2\right )
\] |
[_quadrature] |
✓ |
2.432 |
|
\[
{}y^{\prime } = 3 y \left (y-2\right )
\] |
[_quadrature] |
✓ |
2.005 |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
1.959 |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
1.899 |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
1.742 |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
1.928 |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
1.552 |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
3.356 |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
1.915 |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
1.549 |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
1.175 |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
1.461 |
|