2.2.157 Problems 15601 to 15700

Table 2.315: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15601

\[ {}t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{{7}/{2}}} \]
i.c.

[[_high_order, _missing_y]]

0.551

15602

\[ {}4 x^{2} y^{\prime \prime }-8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.959

15603

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.019

15604

\[ {}2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

1.092

15605

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]

[[_Emden, _Fowler]]

1.277

15606

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

[[_Emden, _Fowler]]

1.701

15607

\[ {}9 x^{2} y^{\prime \prime }-9 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

1.819

15608

\[ {}2 x^{2} y^{\prime \prime }-2 y^{\prime } x +20 y = 0 \]

[[_Emden, _Fowler]]

2.151

15609

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

1.749

15610

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

0.994

15611

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.672

15612

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

0.917

15613

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

0.969

15614

\[ {}x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 y^{\prime } x +140 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.115

15615

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 y^{\prime } x +100 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.118

15616

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.118

15617

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.122

15618

\[ {}x^{3} y^{\prime \prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.114

15619

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.117

15620

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.113

15621

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_y]]

0.170

15622

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \frac {1}{x^{5}} \]

[[_2nd_order, _with_linear_symmetries]]

1.492

15623

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.565

15624

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

47.500

15625

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

42.040

15626

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

1.213

15627

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.583

15628

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

1.803

15629

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +36 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

50.037

15630

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 y^{\prime } x +16 y = \frac {1}{x^{3}} \]

[[_3rd_order, _with_linear_symmetries]]

0.266

15631

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 y^{\prime } x +80 y = \frac {1}{x^{13}} \]

[[_3rd_order, _with_linear_symmetries]]

0.259

15632

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.791

15633

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.026

15634

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.685

15635

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.912

15636

\[ {}x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 y^{\prime } x +20 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.209

15637

\[ {}x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 y^{\prime } x +42 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.193

15638

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 y^{\prime } x -5 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.205

15639

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 y^{\prime } x -17 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.208

15640

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x^{2}} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.029

15641

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.909

15642

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.312

15643

\[ {}9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y = \frac {1}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7.056

15644

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

1.651

15645

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.144

15646

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.121

15647

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

0.118

15648

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

0.111

15649

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.106

15650

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x = -8 \]

[[_3rd_order, _missing_y]]

0.230

15651

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.214

15652

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.803

15653

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.469

15654

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.089

15655

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.393

15656

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.437

15657

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.793

15658

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.181

15659

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

42.580

15660

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.516

15661

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.661

15662

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 y^{\prime } x +125 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.123

15663

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 y^{\prime } x +48 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.134

15664

\[ {}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 y^{\prime } x +15 y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

0.137

15665

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 y^{\prime } x +45 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.141

15666

\[ {}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 y^{\prime } x +4 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.135

15667

\[ {}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 y^{\prime } x +58 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.239

15668

\[ {}6 x^{2} y^{\prime \prime }+5 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.060

15669

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +7 y = 0 \]

[[_Emden, _Fowler]]

0.613

15670

\[ {}\left (x -2\right ) y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.612

15671

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+16 \left (x +2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.696

15672

\[ {}y^{\prime \prime }+3 y^{\prime }-18 y = 0 \]

[[_2nd_order, _missing_x]]

0.555

15673

\[ {}y^{\prime \prime }-11 y^{\prime }+30 y = 0 \]

[[_2nd_order, _missing_x]]

0.554

15674

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.274

15675

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

0.631

15676

\[ {}\left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.585

15677

\[ {}\left (2+3 x \right ) y^{\prime \prime }+3 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

0.552

15678

\[ {}\left (3 x +1\right ) y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.532

15679

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.631

15680

\[ {}y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Hermite]

0.474

15681

\[ {}\left (2 x^{2}+2\right ) y^{\prime \prime }+2 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.568

15682

\[ {}\left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.616

15683

\[ {}y^{\prime \prime }-4 x^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.478

15684

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -3 y = 0 \]
i.c.

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.598

15685

\[ {}y^{\prime \prime }+y^{\prime } x = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.587

15686

\[ {}y^{\prime \prime }+y^{\prime }+y x = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.604

15687

\[ {}y^{\prime \prime }+\left (-1+y^{2}\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x], _Van_der_Pol]

0.207

15688

\[ {}y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.203

15689

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.464

15690

\[ {}y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.476

15691

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.560

15692

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.566

15693

\[ {}y^{\prime \prime }-y \cos \left (x \right ) = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.674

15694

\[ {}x^{2} y^{\prime \prime }+6 y = 0 \]

[[_Emden, _Fowler]]

0.576

15695

\[ {}x \left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.130

15696

\[ {}\left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.633

15697

\[ {}\left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (x +5\right ) y^{\prime }+10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.685

15698

\[ {}2 x y^{\prime \prime }-5 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.847

15699

\[ {}5 x y^{\prime \prime }+8 y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.703

15700

\[ {}9 x y^{\prime \prime }+14 y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.831