# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime }-y \,{\mathrm e}^{x} = 0
\] |
[_separable] |
✓ |
0.864 |
|
\[
{}y^{\prime }+\sqrt {x^{2}+1}\, y = 0
\] |
[_separable] |
✓ |
0.960 |
|
\[
{}y^{\prime } \cos \left (x \right )+y = 0
\] |
[_separable] |
✓ |
1.208 |
|
\[
{}y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0
\] |
[_separable] |
✓ |
0.964 |
|
\[
{}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.753 |
|
\[
{}y^{\prime \prime }+y \cos \left (x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.952 |
|
\[
{}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.960 |
|
\[
{}\sqrt {x}\, y^{\prime \prime }+y^{\prime }+x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.799 |
|
\[
{}\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.477 |
|
\[
{}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.765 |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.618 |
|
\[
{}\left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.563 |
|
\[
{}3 \left (x -2\right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.648 |
|
\[
{}\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.625 |
|
\[
{}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{x +2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.080 |
|
\[
{}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.675 |
|
\[
{}\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.485 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.764 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.081 |
|
\[
{}y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.782 |
|
\[
{}\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.462 |
|
\[
{}\left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.586 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.764 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.772 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.183 |
|
\[
{}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 y^{\prime } x +10 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.862 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +\frac {y}{1-x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.823 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
0.628 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0
\] |
[_Bessel] |
✓ |
1.112 |
|
\[
{}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.842 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.840 |
|
\[
{}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.886 |
|
\[
{}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0
\] |
[_Laguerre] |
✓ |
1.171 |
|
\[
{}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.802 |
|
\[
{}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.600 |
|
\[
{}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.836 |
|
\[
{}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.137 |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x +2}+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.734 |
|
\[
{}4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.852 |
|
\[
{}\left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.914 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (-x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.838 |
|
\[
{}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.862 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
0.626 |
|
\[
{}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.010 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.846 |
|
\[
{}x^{2} \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } x +\left (4 x^{3}-4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.267 |
|
\[
{}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +\left (1-4 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.792 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.241 |
|
\[
{}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.924 |
|
\[
{}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.944 |
|
\[
{}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.140 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +3 y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.944 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.773 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
0.576 |
|
\[
{}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0
\] |
[_Laguerre] |
✓ |
1.181 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.178 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=1-2 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.642 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=6 x-7 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.435 |
|
\[
{}\left [\begin {array}{c} t x^{\prime }+2 x=15 y \\ t y^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.061 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=5 x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.614 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=8 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.536 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x+2 y \\ y^{\prime }=3 x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.539 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=5 x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.599 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=2 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.388 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=-2 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.424 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=8 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.451 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-13 y \\ y^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.608 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x+2 y \\ y^{\prime }=-2 x+3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.501 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=8 x+2 y-17 \\ y^{\prime }=4 x+y-13 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.689 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=8 x+2 y+7 \,{\mathrm e}^{2 t} \\ y^{\prime }=4 x+y-7 \,{\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.567 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x+3 y-6 \,{\mathrm e}^{3 t} \\ y^{\prime }=x+6 y+2 \,{\mathrm e}^{3 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.573 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=4 x+24 t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.549 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-13 y \\ y^{\prime }=x+19 \cos \left (4 t \right )-13 \sin \left (4 t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.424 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x+3 y+5 \operatorname {Heaviside}\left (t -2\right ) \\ y^{\prime }=x+6 y+17 \operatorname {Heaviside}\left (t -2\right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.642 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=8 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.411 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x-5 y \\ y^{\prime }=3 x-7 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.612 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x-5 y+4 \\ y^{\prime }=3 x-7 y+5 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.886 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x+y \\ y^{\prime }=6 x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.398 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x y-6 y \\ y^{\prime }=x-y-5 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.054 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=2 x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.392 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.362 |
|
\[
{}y y^{\prime }+y^{4} = \sin \left (x \right )
\] |
[‘y=_G(x,y’)‘] |
✗ |
2.819 |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.164 |
|
\[
{}{y^{\prime }}^{2}+y = 0
\] |
[_quadrature] |
✓ |
0.522 |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.500 |
|
\[
{}x {y^{\prime \prime }}^{2}+2 y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.104 |
|
\[
{}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right )
\] |
[NONE] |
✗ |
0.726 |
|
\[
{}2 x -1-y^{\prime } = 0
\] |
[_quadrature] |
✓ |
0.482 |
|
\[
{}2 x -y-y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
4.277 |
|
\[
{}y^{\prime }+2 y = 0
\] |
[_quadrature] |
✓ |
1.413 |
|
\[
{}y^{\prime }+x y = 0
\] |
[_separable] |
✓ |
1.829 |
|
\[
{}y^{\prime }+y = \sin \left (x \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
1.291 |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.071 |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.975 |
|
\[
{}x^{\prime \prime }+2 x^{\prime }-10 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.226 |
|
\[
{}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.701 |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+40 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.931 |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.063 |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.066 |
|
\[
{}x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.114 |
|