2.2.158 Problems 15701 to 15800

Table 2.317: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15701

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

3.042

15702

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

1.708

15703

\[ {}y \sec \left (t \right )^{2}+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

[_linear]

10.656

15704

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

3.013

15705

\[ {}t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]

[_exact]

2.941

15706

\[ {}y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6.052

15707

\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

2.056

15708

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

1.902

15709

\[ {}3 t^{2}-y^{\prime } = 0 \]

[_quadrature]

0.285

15710

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

10.645

15711

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

1.676

15712

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

1.797

15713

\[ {}2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.339

15714

\[ {}-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2.931

15715

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

3.567

15716

\[ {}2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

1.914

15717

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

4.904

15718

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

4.056

15719

\[ {}{\mathrm e}^{t} \sin \left (y\right )+\left (1+{\mathrm e}^{t} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.016

15720

\[ {}3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.503

15721

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

2.753

15722

\[ {}2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

38.838

15723

\[ {}1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

59.556

15724

\[ {}2 t \sin \left (y\right )-2 t y \sin \left (t^{2}\right )+\left (t^{2} \cos \left (y\right )+\cos \left (t^{2}\right )\right ) y^{\prime } = 0 \]

[_exact]

35.940

15725

\[ {}\left (3+t \right ) \cos \left (y+t \right )+\sin \left (y+t \right )+\left (3+t \right ) \cos \left (y+t \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

28.682

15726

\[ {}\frac {2 t^{2} y \cos \left (t^{2}\right )-y \sin \left (t^{2}\right )}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

8.774

15727

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

5.506

15728

\[ {}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

4.500

15729

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

2.143

15730

\[ {}1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]
i.c.

[_linear]

1.621

15731

\[ {}2 t y+3 t^{2}+\left (t^{2}-1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

1.394

15732

\[ {}1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.877

15733

\[ {}{\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact]

1.941

15734

\[ {}2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime } = 0 \]
i.c.

[_exact]

36.030

15735

\[ {}y^{2}-2 \sin \left (2 t \right )+\left (1+2 t y\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

43.499

15736

\[ {}\cos \left (t \right )^{2}-\sin \left (t \right )^{2}+y+\left (\sec \left (y\right ) \tan \left (y\right )+t \right ) y^{\prime } = 0 \]
i.c.

[_exact]

38.183

15737

\[ {}\frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]
i.c.

[_exact, _rational, _Bernoulli]

4.234

15738

\[ {}\frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]
i.c.

[_exact]

2.882

15739

\[ {}-2 x -y \cos \left (x y\right )+\left (2 y-x \cos \left (x y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

8.888

15740

\[ {}-4 x^{3}+6 y \sin \left (6 x y\right )+\left (4 y^{3}+6 x \sin \left (6 x y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

43.775

15741

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

1.585

15742

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

1.816

15743

\[ {}y+\left (2 t -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.175

15744

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.161

15745

\[ {}y+2 t^{2}+\left (t^{2} y-t \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.222

15746

\[ {}5 t y+4 y^{2}+1+\left (t^{2}+2 t y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.452

15747

\[ {}5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.105

15748

\[ {}2 t +\tan \left (y\right )+\left (t -t^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.155

15749

\[ {}2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

39.433

15750

\[ {}-1+{\mathrm e}^{t y} y+y \cos \left (t y\right )+\left (1+{\mathrm e}^{t y} t +t \cos \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

37.049

15751

\[ {}2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[_quadrature]

0.568

15752

\[ {}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.870

15753

\[ {}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.277

15754

\[ {}y^{\prime }-\frac {y}{2} = \frac {t}{y} \]

[_rational, _Bernoulli]

1.181

15755

\[ {}y^{\prime }+y = t y^{2} \]

[_Bernoulli]

1.435

15756

\[ {}2 t y^{\prime }-y = 2 t y^{3} \cos \left (t \right ) \]

[_Bernoulli]

41.582

15757

\[ {}t y^{\prime }-y = t y^{3} \sin \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

40.464

15758

\[ {}y^{\prime }-2 y = \frac {\cos \left (t \right )}{\sqrt {y}} \]

[_Bernoulli]

31.732

15759

\[ {}y^{\prime }+3 y = \sqrt {y}\, \sin \left (t \right ) \]

[_Bernoulli]

1.980

15760

\[ {}y^{\prime }-\frac {y}{t} = t y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.888

15761

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.753

15762

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

1.829

15763

\[ {}y^{\prime }-\frac {y}{t} = t^{2} y^{{3}/{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6.607

15764

\[ {}\cos \left (\frac {t}{y+t}\right )+{\mathrm e}^{\frac {2 y}{t}} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

19.551

15765

\[ {}y \ln \left (\frac {t}{y}\right )+\frac {t^{2} y^{\prime }}{y+t} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.951

15766

\[ {}2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime } = 0 \]

[_separable]

11.634

15767

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.687

15768

\[ {}\frac {\sin \left (2 t \right )}{\cos \left (2 y\right )}+\frac {\ln \left (y\right ) y^{\prime }}{\ln \left (t \right )} = 0 \]

[_separable]

8.267

15769

\[ {}\sqrt {t^{2}+1}+y y^{\prime } = 0 \]

[_separable]

1.363

15770

\[ {}2 t +\left (y-3 t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5.068

15771

\[ {}2 y-3 t +t y^{\prime } = 0 \]

[_linear]

1.934

15772

\[ {}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.843

15773

\[ {}t^{2}+t y+y^{2}-t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

36.719

15774

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.927

15775

\[ {}y^{\prime } = \frac {t +4 y}{4 t +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.093

15776

\[ {}t -y+t y^{\prime } = 0 \]

[_linear]

1.197

15777

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.848

15778

\[ {}2 t^{2}-7 t y+5 y^{2}+t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12.700

15779

\[ {}y+2 \sqrt {t^{2}+y^{2}}-t y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10.396

15780

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.200

15781

\[ {}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

11.497

15782

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.862

15783

\[ {}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.650

15784

\[ {}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.710

15785

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.344

15786

\[ {}y^{\prime }+2 y = t^{2} \sqrt {y} \]
i.c.

[_Bernoulli]

1.445

15787

\[ {}y^{\prime }-2 y = t^{2} \sqrt {y} \]
i.c.

[_Bernoulli]

1.404

15788

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.273

15789

\[ {}t +y-t y^{\prime } = 0 \]
i.c.

[_linear]

1.525

15790

\[ {}t y^{\prime }-y-\sqrt {t^{2}+y^{2}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.262

15791

\[ {}t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

301.041

15792

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

93.021

15793

\[ {}t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19.047

15794

\[ {}y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.707

15795

\[ {}t -2 y+1+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.437

15796

\[ {}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.534

15797

\[ {}3 t -y+1-\left (6 t -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.451

15798

\[ {}2 t +3 y+1+\left (4 t +6 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.384

15799

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

1.352

15800

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{4} \]
i.c.

[_Bernoulli]

3.512