2.2.164 Problems 16301 to 16400

Table 2.329: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16301

\[ {}y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.373

16302

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.405

16303

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y = 1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.384

16304

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = 5 x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.365

16305

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.427

16306

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-2 x} y = {\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.560

16307

\[ {}\left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y = \frac {\left (x -1\right )^{2}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

16308

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = x \,{\mathrm e}^{2 x}-1 \]

[[_2nd_order, _with_linear_symmetries]]

0.647

16309

\[ {}x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y = x^{2} \left (2 x -3\right ) \]

[[_2nd_order, _with_linear_symmetries]]

0.413

16310

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.033

16311

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _missing_y]]

1.473

16312

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.618

16313

\[ {}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.754

16314

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.159

16315

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.063

16316

\[ {}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.622

16317

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _missing_y]]

2.952

16318

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

[[_3rd_order, _missing_y]]

0.267

16319

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _missing_y]]

1.074

16320

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

2.619

16321

\[ {}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

[[_2nd_order, _missing_y]]

0.965

16322

\[ {}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

[[_2nd_order, _missing_y]]

1.082

16323

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[[_2nd_order, _missing_y]]

1.612

16324

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.302

16325

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {6+x}{x^{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6.359

16326

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {1}{x^{2}+1} \]
i.c.

[[_2nd_order, _missing_y]]

1.546

16327

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (x -1\right )^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.684

16328

\[ {}2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.770

16329

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.017

16330

\[ {}x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+y x = 2 \ln \left (x \right ) \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.683

16331

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = 2 x -2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.053

16332

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

1.566

16333

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

[[_2nd_order, _missing_x]]

1.510

16334

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

0.765

16335

\[ {}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

[[_2nd_order, _missing_x]]

0.862

16336

\[ {}x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

[[_2nd_order, _missing_x]]

0.456

16337

\[ {}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.566

16338

\[ {}x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

[[_2nd_order, _missing_x]]

0.749

16339

\[ {}x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.427

16340

\[ {}x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.553

16341

\[ {}x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

[[_2nd_order, _missing_x]]

0.484

16342

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.570

16343

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.475

16344

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.942

16345

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.316

16346

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.893

16347

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.648

16348

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.813

16349

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.169

16350

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.651

16351

\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

7.727

16352

\[ {}y^{\prime \prime }+y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

1.737

16353

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.707

16354

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.589

16355

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.132

16356

\[ {}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.155

16357

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.804

16358

\[ {}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]
i.c.

[[_high_order, _missing_y]]

0.197

16359

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]
i.c.

[[_high_order, _missing_y]]

0.211

16360

\[ {}y^{\prime } = 1-y x \]
i.c.

[_linear]

0.535

16361

\[ {}y^{\prime } = \frac {-x +y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.234

16362

\[ {}y^{\prime } = y \sin \left (x \right ) \]
i.c.

[_separable]

0.658

16363

\[ {}y^{\prime \prime }+y x = 0 \]
i.c.

[[_Emden, _Fowler]]

0.448

16364

\[ {}y^{\prime \prime }-y^{\prime } \sin \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.678

16365

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = x \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.918

16366

\[ {}\ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

4.377

16367

\[ {}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]
i.c.

[NONE]

0.011

16368

\[ {}y^{\prime }-2 y x = 0 \]
i.c.

[_separable]

0.516

16369

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.482

16370

\[ {}y^{\prime \prime }-y^{\prime } x +y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.477

16371

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.484

16372

\[ {}y^{\prime \prime } = x^{2} y-y^{\prime } \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.522

16373

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.687

16374

\[ {}y^{\prime } = {\mathrm e}^{y}+y x \]
i.c.

[‘y=_G(x,y’)‘]

0.308

16375

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.866

16376

\[ {}\left (x +1\right ) y^{\prime }-n y = 0 \]

[_separable]

0.521

16377

\[ {}9 x \left (1-x \right ) y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[_Jacobi]

0.846

16378

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.976

16379

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.477

16380

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.897

16381

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.882

16382

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +4 \left (x^{4}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.076

16383

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.272

16384

\[ {}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.857

16385

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.903

16386

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.636

16387

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.031

16388

\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.466

16389

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.909

16390

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.908

16391

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 t x_{1}^{2} \\ x_{2}^{\prime }=\frac {x_{2}+t}{t} \end {array}\right ] \]

system_of_ODEs

0.053

16392

\[ {}\left [\begin {array}{c} x_{1}^{\prime }={\mathrm e}^{t -x_{1}} \\ x_{2}^{\prime }=2 \,{\mathrm e}^{x_{1}} \end {array}\right ] \]

system_of_ODEs

0.054

16393

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=\frac {y^{2}}{x} \end {array}\right ] \]

system_of_ODEs

0.047

16394

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}^{2}}{x_{2}} \\ x_{2}^{\prime }=x_{2}-x_{1} \end {array}\right ] \]

system_of_ODEs

0.048

16395

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {{\mathrm e}^{-x}}{t} \\ y^{\prime }=\frac {x \,{\mathrm e}^{-y}}{t} \end {array}\right ] \]

system_of_ODEs

0.047

16396

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y+t}{x+y} \\ y^{\prime }=\frac {x-t}{x+y} \end {array}\right ] \]

system_of_ODEs

0.048

16397

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {t -y}{-x+y} \\ y^{\prime }=\frac {x-t}{-x+y} \end {array}\right ] \]

system_of_ODEs

0.049

16398

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y+t}{x+y} \\ y^{\prime }=\frac {t +x}{x+y} \end {array}\right ] \]

system_of_ODEs

0.057

16399

\[ {}\left [\begin {array}{c} x^{\prime }=-9 y \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.337

16400

\[ {}\left [\begin {array}{c} x^{\prime }=y+t \\ y^{\prime }=x-t \end {array}\right ] \]

system_of_ODEs

0.374