2.2.165 Problems 16401 to 16461

Table 2.331: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16401

\[ {}\left [\begin {array}{c} x^{\prime }+3 x+4 y=0 \\ y^{\prime }+2 x+5 y=0 \end {array}\right ] \]
i.c.

system_of_ODEs

0.400

16402

\[ {}\left [\begin {array}{c} x^{\prime }=x+5 y \\ y^{\prime }=-x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.496

16403

\[ {}\left [\begin {array}{c} 4 x^{\prime }-y^{\prime }+3 x=\sin \left (t \right ) \\ x^{\prime }+y=\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.593

16404

\[ {}\left [\begin {array}{c} x^{\prime }=z-y \\ y^{\prime }=z \\ z^{\prime }=z-x \end {array}\right ] \]

system_of_ODEs

0.549

16405

\[ {}\left [\begin {array}{c} x^{\prime }=y+z \\ y^{\prime }=x+z \\ z^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.334

16406

\[ {}\left [\begin {array}{c} x^{\prime \prime }=y \\ y^{\prime \prime }=x \end {array}\right ] \]

system_of_ODEs

0.026

16407

\[ {}\left [\begin {array}{c} x^{\prime \prime }+y^{\prime }+x=0 \\ x^{\prime }+y^{\prime \prime }=0 \end {array}\right ] \]

system_of_ODEs

0.020

16408

\[ {}\left [\begin {array}{c} x^{\prime \prime }=3 x+y \\ y^{\prime }=-2 x \end {array}\right ] \]

system_of_ODEs

0.043

16409

\[ {}\left [\begin {array}{c} x^{\prime \prime }=x^{2}+y \\ y^{\prime }=-2 x x^{\prime }+x \end {array}\right ] \]
i.c.

system_of_ODEs

0.000

16410

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2}+y^{2} \\ y^{\prime }=2 x y \end {array}\right ] \]

system_of_ODEs

0.046

16411

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {1}{y} \\ y^{\prime }=\frac {1}{x} \end {array}\right ] \]

system_of_ODEs

0.046

16412

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {x}{y} \\ y^{\prime }=\frac {y}{x} \end {array}\right ] \]

system_of_ODEs

0.047

16413

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y}{x-y} \\ y^{\prime }=\frac {x}{x-y} \end {array}\right ] \]

system_of_ODEs

0.047

16414

\[ {}\left [\begin {array}{c} x^{\prime }=\sin \left (x\right ) \cos \left (y\right ) \\ y^{\prime }=\cos \left (x\right ) \sin \left (y\right ) \end {array}\right ] \]

system_of_ODEs

0.048

16415

\[ {}\left [\begin {array}{c} {\mathrm e}^{t} x^{\prime }=\frac {1}{y} \\ {\mathrm e}^{t} y^{\prime }=\frac {1}{x} \end {array}\right ] \]

system_of_ODEs

0.054

16416

\[ {}\left [\begin {array}{c} x^{\prime }=\cos \left (x\right )^{2} \cos \left (y\right )^{2}+\sin \left (x\right )^{2} \cos \left (y\right )^{2} \\ y^{\prime }=-\frac {\sin \left (2 x\right ) \sin \left (2 y\right )}{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.051

16417

\[ {}\left [\begin {array}{c} x^{\prime }=8 y-x \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.315

16418

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=-x+y \end {array}\right ] \]

system_of_ODEs

0.279

16419

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.572

16420

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=-2 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.428

16421

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-5 y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.425

16422

\[ {}\left [\begin {array}{c} x^{\prime }=y+z-x \\ y^{\prime }=x-y+z \\ z^{\prime }=x+y-z \end {array}\right ] \]

system_of_ODEs

0.347

16423

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y+z \\ y^{\prime }=x+2 y-z \\ z^{\prime }=x-y+2 z \end {array}\right ] \]

system_of_ODEs

0.462

16424

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y+z \\ y^{\prime }=x+z \\ z^{\prime }=y-2 z-3 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.453

16425

\[ {}\left [\begin {array}{c} x^{\prime }+2 x-y=-{\mathrm e}^{2 t} \\ y^{\prime }+3 x-2 y=6 \,{\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.499

16426

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-\cos \left (t \right ) \\ y^{\prime }=-y-2 x+\cos \left (t \right )+\sin \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.889

16427

\[ {}\left [\begin {array}{c} x^{\prime }=y+\tan \left (t \right )^{2}-1 \\ y^{\prime }=\tan \left (t \right )-x \end {array}\right ] \]

system_of_ODEs

0.708

16428

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-2 y+\frac {2}{{\mathrm e}^{t}-1} \\ y^{\prime }=6 x+3 y-\frac {3}{{\mathrm e}^{t}-1} \end {array}\right ] \]

system_of_ODEs

0.056

16429

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+\frac {1}{\cos \left (t \right )} \end {array}\right ] \]

system_of_ODEs

0.644

16430

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+1 \end {array}\right ] \]

system_of_ODEs

0.506

16431

\[ {}\left [\begin {array}{c} x^{\prime }=3-2 y \\ y^{\prime }=2 x-2 t \end {array}\right ] \]

system_of_ODEs

0.539

16432

\[ {}\left [\begin {array}{c} x^{\prime }=-y+\sin \left (t \right ) \\ y^{\prime }=x+\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.569

16433

\[ {}\left [\begin {array}{c} x^{\prime }=x+y+{\mathrm e}^{t} \\ y^{\prime }=x+y-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.354

16434

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-5 y+4 t -1 \\ y^{\prime }=x-2 y+t \end {array}\right ] \]
i.c.

system_of_ODEs

0.571

16435

\[ {}\left [\begin {array}{c} x^{\prime }=y-x+{\mathrm e}^{t} \\ y^{\prime }=x-y+{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.510

16436

\[ {}\left [\begin {array}{c} x^{\prime }+y=t^{2} \\ y^{\prime }-x=t \end {array}\right ] \]

system_of_ODEs

0.548

16437

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }+y={\mathrm e}^{-t} \\ 2 x^{\prime }+y^{\prime }+2 y=\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.464

16438

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y-2 z+2-t \\ y^{\prime }=-x+1 \\ z^{\prime }=x+y-z+1-t \end {array}\right ] \]

system_of_ODEs

1.033

16439

\[ {}\left [\begin {array}{c} x^{\prime }+x+2 y=2 \,{\mathrm e}^{-t} \\ y^{\prime }+y+z=1 \\ z^{\prime }+z=1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.577

16440

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=x+2 y \end {array}\right ] \]

system_of_ODEs

0.317

16441

\[ {}\left [\begin {array}{c} x^{\prime }=6 x+y \\ y^{\prime }=4 x+3 y \end {array}\right ] \]

system_of_ODEs

0.325

16442

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-4 y+1 \\ y^{\prime }=-x+5 y \end {array}\right ] \]

system_of_ODEs

0.530

16443

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+y+{\mathrm e}^{t} \\ y^{\prime }=x+3 y-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.460

16444

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y+\cos \left (t \right ) \\ y^{\prime }=-x-2 y+\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.474

16445

\[ {}x^{\prime }+3 x = {\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

0.255

16446

\[ {}x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \]
i.c.

[[_linear, ‘class A‘]]

0.265

16447

\[ {}x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.286

16448

\[ {}2 x^{\prime }+6 x = t \,{\mathrm e}^{-3 t} \]
i.c.

[[_linear, ‘class A‘]]

0.254

16449

\[ {}x^{\prime }+x = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.303

16450

\[ {}x^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

0.204

16451

\[ {}x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _quadrature]]

0.227

16452

\[ {}x^{\prime \prime } = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.292

16453

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.218

16454

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.264

16455

\[ {}x^{\prime \prime }-x^{\prime } = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.300

16456

\[ {}x^{\prime \prime }+x = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.247

16457

\[ {}x^{\prime \prime }+6 x^{\prime } = 12 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

0.248

16458

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 2 \]
i.c.

[[_2nd_order, _missing_x]]

0.251

16459

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 4 \]
i.c.

[[_2nd_order, _missing_x]]

0.300

16460

\[ {}2 x^{\prime \prime }-2 x^{\prime } = \left (1+t \right ) {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _missing_y]]

0.296

16461

\[ {}x^{\prime \prime }+x = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.366