2.2.166 Problems 16501 to 16600

Table 2.333: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16501

\[ {}{y^{\prime }}^{2}-4 x y^{\prime }+2 y+2 x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

2.395

16502

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

[_quadrature]

1.659

16503

\[ {}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \]

[_quadrature]

3.029

16504

\[ {}x = \ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right ) \]

[_quadrature]

1.920

16505

\[ {}x = {y^{\prime }}^{2}-2 y^{\prime }+2 \]

[_quadrature]

0.225

16506

\[ {}y = y^{\prime } \ln \left (y^{\prime }\right ) \]

[_quadrature]

4.193

16507

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

[_quadrature]

1.215

16508

\[ {}{y^{\prime }}^{2} x = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

[_quadrature]

0.516

16509

\[ {}x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a \]

[_quadrature]

1.902

16510

\[ {}y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}} = a^{{2}/{5}} \]

[_quadrature]

2.461

16511

\[ {}x = y^{\prime }+\sin \left (y^{\prime }\right ) \]

[_quadrature]

0.510

16512

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

[_quadrature]

1.770

16513

\[ {}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \]

[_quadrature]

3.527

16514

\[ {}y = 2 x y^{\prime }+\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.505

16515

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.500

16516

\[ {}y = 2 x y^{\prime }+\sin \left (y^{\prime }\right ) \]

[_dAlembert]

1.083

16517

\[ {}y = {y^{\prime }}^{2} x -\frac {1}{y^{\prime }} \]

[_dAlembert]

3.049

16518

\[ {}y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }} \]

[_dAlembert]

1.045

16519

\[ {}y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.762

16520

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.346

16521

\[ {}{y^{\prime }}^{2} x -y^{\prime } y-y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.482

16522

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

6.291

16523

\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.378

16524

\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 y \,{\mathrm e}^{x} = 1-{\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.213

16525

\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.498

16526

\[ {}x y^{\prime }-y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

1.760

16527

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+x y+1 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.339

16528

\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{2}-4 y^{\prime } y-4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7.233

16529

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

0.582

16530

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

7.499

16531

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

1.776

16532

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

[_quadrature]

3.033

16533

\[ {}\left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (x y^{\prime }-2 y\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

8.677

16534

\[ {}y \left (y-2 x y^{\prime }\right )^{2} = 2 y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

3.237

16535

\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.720

16536

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

1.597

16537

\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.503

16538

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

150.854

16539

\[ {}y^{2} {y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

0.591

16540

\[ {}{y^{\prime }}^{2}-y^{\prime } y+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.512

16541

\[ {}3 {y^{\prime }}^{2} x -6 y^{\prime } y+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.456

16542

\[ {}y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

7.697

16543

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

2.461

16544

\[ {}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x \]

[_linear]

6.414

16545

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

5.339

16546

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17.037

16547

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

130.082

16548

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.533

16549

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

[_Bernoulli]

2.157

16550

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_linear]

2.269

16551

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

1.014

16552

\[ {}x^{2}+x y^{\prime } = 3 x +y^{\prime } \]

[_quadrature]

0.372

16553

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.256

16554

\[ {}\frac {1}{y^{2}-x y+x^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

25.006

16555

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

[_linear]

1.054

16556

\[ {}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.849

16557

\[ {}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

[_separable]

7.289

16558

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]

1.371

16559

\[ {}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.868

16560

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

4.921

16561

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.448

16562

\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.378

16563

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.829

16564

\[ {}x^{2}+y^{2}+2 x +2 y^{\prime } y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.054

16565

\[ {}\left (x -1\right ) \left (y^{2}-y+1\right ) = \left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

[_separable]

1.950

16566

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.803

16567

\[ {}y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2.067

16568

\[ {}y^{\prime }-1 = {\mathrm e}^{x +2 y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.983

16569

\[ {}2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.137

16570

\[ {}x^{2} y^{n} y^{\prime } = 2 x y^{\prime }-y \]

[[_homogeneous, ‘class G‘], _rational]

1.388

16571

\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.666

16572

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.651

16573

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]
i.c.

[_Bernoulli]

2.446

16574

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

2.214

16575

\[ {}y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.256

16576

\[ {}\left (5 x -7 y+1\right ) y^{\prime }+y-1+x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.851

16577

\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.786

16578

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.814

16579

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (y-1+x \right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

1.758

16580

\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

[[_homogeneous, ‘class G‘]]

2.619

16581

\[ {}y^{\prime }+{y^{\prime }}^{2} x -y = 0 \]

[_rational, _dAlembert]

0.916

16582

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.747

16583

\[ {}x y^{\prime \prime \prime } = 2 \]

[[_3rd_order, _quadrature]]

0.197

16584

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.202

16585

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

0.915

16586

\[ {}{y^{\prime }}^{4} = 1 \]

[_quadrature]

0.966

16587

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.884

16588

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

[[_2nd_order, _missing_x]]

0.980

16589

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

0.535

16590

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.319

16591

\[ {}y^{\prime \prime \prime \prime } = x \]

[[_high_order, _quadrature]]

0.110

16592

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

[[_3rd_order, _quadrature]]

0.154

16593

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]
i.c.

[[_2nd_order, _quadrature]]

1.009

16594

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

1.727

16595

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

1.483

16596

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

0.957

16597

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.918

16598

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

[[_2nd_order, _missing_y]]

0.970

16599

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

[[_2nd_order, _missing_y]]

1.165

16600

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

0.757