2.3.1 first order ode linear

Table 2.333: first order ode linear

#

ODE

CAS classification

Solved?

19

\[ {}y^{\prime } = -y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

20

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

21

\[ {}y^{\prime } = y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

22

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

23

\[ {}y^{\prime } = y-x +1 \]

[[_linear, ‘class A‘]]

24

\[ {}y^{\prime } = x -y+1 \]

[[_linear, ‘class A‘]]

25

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

26

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

37

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

38

\[ {}y^{\prime } = -x +y \]
i.c.

[[_linear, ‘class A‘]]

41

\[ {}y^{\prime }+2 y x = 0 \]

[_separable]

43

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

44

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

49

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

57

\[ {}y^{\prime } = 1+x +y+y x \]

[_separable]

59

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

62

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

64

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

65

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

74

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

75

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

76

\[ {}y^{\prime }-2 y x = {\mathrm e}^{x^{2}} \]

[_linear]

77

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

78

\[ {}y^{\prime } x +5 y = 7 x^{2} \]
i.c.

[_linear]

79

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

80

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

81

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

82

\[ {}2 y^{\prime } x -3 y = 9 x^{3} \]

[_linear]

83

\[ {}y^{\prime } x +y = 3 y x \]
i.c.

[_separable]

84

\[ {}3 y+y^{\prime } x = 2 x^{5} \]
i.c.

[_linear]

85

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

86

\[ {}y^{\prime } x -3 y = x^{3} \]
i.c.

[_linear]

87

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

88

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

89

\[ {}\left (x +1\right ) y^{\prime }+y = \cos \left (x \right ) \]
i.c.

[_linear]

90

\[ {}y^{\prime } x = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

91

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

92

\[ {}y^{\prime } = 1+x +y+y x \]
i.c.

[_separable]

93

\[ {}y^{\prime } x = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

94

\[ {}y^{\prime } = 2 y x +3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

95

\[ {}y^{\prime } x +\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

96

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 y x = x \]
i.c.

[_separable]

97

\[ {}\left (x^{2}+1\right ) y^{\prime }+3 x^{3} y = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \]
i.c.

[_linear]

98

\[ {}\frac {1-4 x y^{2}}{x^{\prime }} = y^{3} \]

[_linear]

99

\[ {}\frac {x+y \,{\mathrm e}^{y}}{x^{\prime }} = 1 \]

[[_linear, ‘class A‘]]

100

\[ {}\frac {1+2 x y}{x^{\prime }} = y^{2}+1 \]

[_linear]

101

\[ {}y^{\prime } = 1+2 y x \]

[_linear]

102

\[ {}2 y^{\prime } x = y+2 x \cos \left (x \right ) \]
i.c.

[_linear]

103

\[ {}y^{\prime }+p \left (x \right ) y = 0 \]

[_separable]

104

\[ {}y^{\prime }+p \left (x \right ) y = q \left (x \right ) \]

[_linear]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

179

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

183

\[ {}3 y+x^{4} y^{\prime } = 2 y x \]

[_separable]

185

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

193

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

198

\[ {}3 y+y^{\prime } x = \frac {3}{x^{{3}/{2}}} \]

[_linear]

199

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y = 1 \]

[_linear]

203

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

206

\[ {}y^{\prime } x +y = 2 \,{\mathrm e}^{2 x} \]

[_linear]

207

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

209

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

213

\[ {}y^{\prime } = \frac {2 y x +2 x}{x^{2}+1} \]

[_separable]

661

\[ {}y^{\prime } = -y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

662

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

663

\[ {}y^{\prime } = y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

664

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

665

\[ {}y^{\prime } = y-x +1 \]

[[_linear, ‘class A‘]]

666

\[ {}y^{\prime } = x -y+1 \]

[[_linear, ‘class A‘]]

667

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

668

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

677

\[ {}y^{\prime }+2 y x = 0 \]

[_separable]

679

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

692

\[ {}y^{\prime } = 1+x +y+y x \]

[_separable]

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

697

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

699

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

700

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

705

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

706

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

707

\[ {}y^{\prime }-2 y x = {\mathrm e}^{x^{2}} \]

[_linear]

708

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

709

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]
i.c.

[_linear]

710

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

711

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

712

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

713

\[ {}2 y^{\prime } x -3 y = 9 x^{3} \]

[_linear]

714

\[ {}y^{\prime } x +y = 3 y x \]
i.c.

[_separable]

715

\[ {}3 y+y^{\prime } x = 2 x^{5} \]
i.c.

[_linear]

716

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

717

\[ {}y^{\prime } x -3 y = x^{3} \]
i.c.

[_linear]

718

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

719

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

720

\[ {}\left (x +1\right ) y^{\prime }+y = \cos \left (x \right ) \]
i.c.

[_linear]

721

\[ {}y^{\prime } x = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

722

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

723

\[ {}y^{\prime } = 1+x +y+y x \]
i.c.

[_separable]

724

\[ {}y^{\prime } x = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

725

\[ {}y^{\prime } = 2 y x +3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

726

\[ {}y^{\prime } x +\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

727

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 y x = x \]
i.c.

[_separable]

728

\[ {}\left (x^{2}+1\right ) y^{\prime }+3 x^{3} y = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \]
i.c.

[_linear]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

771

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

775

\[ {}3 y+x^{4} y^{\prime } = 2 y x \]

[_separable]

777

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

785

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

790

\[ {}3 y+y^{\prime } x = \frac {3}{x^{{3}/{2}}} \]

[_linear]

791

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y = 1 \]

[_linear]

795

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

798

\[ {}y^{\prime } x +y = 2 \,{\mathrm e}^{2 x} \]

[_linear]

799

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

800

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

801

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

805

\[ {}y^{\prime } = \frac {2 y x +2 x}{x^{2}+1} \]

[_separable]

1098

\[ {}3 y+y^{\prime } = {\mathrm e}^{-2 t}+t \]

[[_linear, ‘class A‘]]

1099

\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} t^{2} \]

[[_linear, ‘class A‘]]

1100

\[ {}y^{\prime }+y = 1+t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1101

\[ {}\frac {y}{t}+y^{\prime } = 3 \cos \left (2 t \right ) \]

[_linear]

1102

\[ {}-2 y+y^{\prime } = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1103

\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \]

[_linear]

1104

\[ {}2 t y+y^{\prime } = 2 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

1105

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

1106

\[ {}y+2 y^{\prime } = 3 t \]

[[_linear, ‘class A‘]]

1107

\[ {}t y^{\prime }-y = t^{2} {\mathrm e}^{-t} \]

[_linear]

1108

\[ {}y^{\prime }+y = 5 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1109

\[ {}y+2 y^{\prime } = 3 t^{2} \]

[[_linear, ‘class A‘]]

1110

\[ {}-y+y^{\prime } = 2 \,{\mathrm e}^{2 t} t \]
i.c.

[[_linear, ‘class A‘]]

1111

\[ {}2 y+y^{\prime } = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

1112

\[ {}2 y+t y^{\prime } = t^{2}-t +1 \]
i.c.

[_linear]

1113

\[ {}\frac {2 y}{t}+y^{\prime } = \frac {\cos \left (t \right )}{t^{2}} \]
i.c.

[_linear]

1114

\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1115

\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \]
i.c.

[_linear]

1116

\[ {}4 t^{2} y+t^{3} y^{\prime } = {\mathrm e}^{-t} \]
i.c.

[_linear]

1117

\[ {}\left (1+t \right ) y+t y^{\prime } = t \]
i.c.

[_linear]

1118

\[ {}-\frac {y}{2}+y^{\prime } = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1119

\[ {}-y+2 y^{\prime } = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

1120

\[ {}-2 y+3 y^{\prime } = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

1121

\[ {}\left (1+t \right ) y+t y^{\prime } = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

1122

\[ {}2 y+t y^{\prime } = \frac {\sin \left (t \right )}{t} \]
i.c.

[_linear]

1123

\[ {}\cos \left (t \right ) y+\sin \left (t \right ) y^{\prime } = {\mathrm e}^{t} \]
i.c.

[_linear]

1124

\[ {}\frac {y}{2}+y^{\prime } = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1125

\[ {}\frac {2 y}{3}+y^{\prime } = 1-\frac {t}{2} \]

[[_linear, ‘class A‘]]

1126

\[ {}\frac {y}{4}+y^{\prime } = 3+2 \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1127

\[ {}-y+y^{\prime } = 1+3 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

1128

\[ {}-\frac {3 y}{2}+y^{\prime } = 2 \,{\mathrm e}^{t}+3 t \]

[[_linear, ‘class A‘]]

1166

\[ {}\ln \left (t \right ) y+\left (t -3\right ) y^{\prime } = 2 t \]

[_linear]

1167

\[ {}y+\left (t -4\right ) t y^{\prime } = 0 \]
i.c.

[_separable]

1168

\[ {}\tan \left (t \right ) y+y^{\prime } = \sin \left (t \right ) \]
i.c.

[_linear]

1169

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1170

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1171

\[ {}y+\ln \left (t \right ) y^{\prime } = \cot \left (t \right ) \]

[_linear]

1196

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1202

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

[_linear]

1211

\[ {}y^{\prime } = -1+{\mathrm e}^{2 x}+y \]

[[_linear, ‘class A‘]]

1218

\[ {}y^{\prime } = \frac {x^{3}-2 y}{x} \]

[_linear]

1221

\[ {}y^{\prime } = 3-6 x +y-2 y x \]

[_separable]

1223

\[ {}y x +y^{\prime } x = 1-y \]
i.c.

[_linear]

1225

\[ {}y^{\prime } x +2 y = \frac {\sin \left (x \right )}{x} \]
i.c.

[_linear]

1229

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{x}} \]

[_linear]

1232

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime } = y-y \,{\mathrm e}^{x} \]

[_separable]

1234

\[ {}y^{\prime } = {\mathrm e}^{2 x}+3 y \]

[[_linear, ‘class A‘]]

1235

\[ {}2 y+y^{\prime } = {\mathrm e}^{-x^{2}-2 x} \]

[[_linear, ‘class A‘]]

1240

\[ {}\left (1+t \right ) y+t y^{\prime } = {\mathrm e}^{2 t} \]

[_linear]

1245

\[ {}3 t +2 y = -t y^{\prime } \]

[_linear]

1520

\[ {}y^{\prime } x +y = x^{2} \]

[_linear]

1521

\[ {}y^{\prime }+2 y x = x \]

[_separable]

1530

\[ {}y^{\prime } = \cos \left (x \right )-y \tan \left (x \right ) \]
i.c.

[_linear]

1531

\[ {}y^{\prime } = \frac {x^{2}-2 x^{2} y+2}{x^{3}} \]
i.c.

[_linear]

1538

\[ {}y^{\prime }+3 x^{2} y = 0 \]

[_separable]

1539

\[ {}y^{\prime } x +y \ln \left (x \right ) = 0 \]

[_separable]

1540

\[ {}3 y+y^{\prime } x = 0 \]

[_separable]

1541

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1542

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]
i.c.

[_separable]

1543

\[ {}y^{\prime } x +\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]
i.c.

[_separable]

1544

\[ {}y^{\prime } x +\left (1+x \cot \left (x \right )\right ) y = 0 \]
i.c.

[_separable]

1545

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]
i.c.

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1547

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]
i.c.

[_separable]

1549

\[ {}y^{\prime }+\left (\frac {1}{x}-1\right ) y = -\frac {2}{x} \]

[_linear]

1550

\[ {}y^{\prime }+2 y x = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

1551

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {{\mathrm e}^{-x^{2}}}{x^{2}+1} \]

[_linear]

1552

\[ {}y^{\prime }+\frac {y}{x} = \frac {7}{x^{2}}+3 \]

[_linear]

1553

\[ {}y^{\prime }+\frac {4 y}{x -1} = \frac {1}{\left (x -1\right )^{5}}+\frac {\sin \left (x \right )}{\left (x -1\right )^{4}} \]

[_linear]

1554

\[ {}y^{\prime } x +\left (2 x^{2}+1\right ) y = x^{3} {\mathrm e}^{-x^{2}} \]

[_linear]

1555

\[ {}y^{\prime } x +2 y = \frac {2}{x^{2}}+1 \]

[_linear]

1556

\[ {}y^{\prime }+y \tan \left (x \right ) = \cos \left (x \right ) \]

[_linear]

1557

\[ {}2 y+\left (x +1\right ) y^{\prime } = \frac {\sin \left (x \right )}{x +1} \]

[_linear]

1558

\[ {}\left (x -2\right ) \left (x -1\right ) y^{\prime }-\left (4 x -3\right ) y = \left (x -2\right )^{3} \]

[_linear]

1559

\[ {}y^{\prime }+2 \sin \left (x \right ) \cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )^{2}} \]

[_linear]

1560

\[ {}x^{2} y^{\prime }+3 y x = {\mathrm e}^{x} \]

[_linear]

1561

\[ {}y^{\prime }+7 y = {\mathrm e}^{3 x} \]
i.c.

[[_linear, ‘class A‘]]

1562

\[ {}\left (x^{2}+1\right ) y^{\prime }+4 y x = \frac {2}{x^{2}+1} \]
i.c.

[_linear]

1563

\[ {}3 y+y^{\prime } x = \frac {2}{x \left (x^{2}+1\right )} \]
i.c.

[_linear]

1564

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_linear]

1565

\[ {}y^{\prime }+\frac {y}{x} = \frac {2}{x^{2}}+1 \]
i.c.

[_linear]

1566

\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1}{\left (x -1\right )^{3}}+\frac {\sin \left (x \right )}{\left (x -1\right )^{2}} \]
i.c.

[_linear]

1567

\[ {}y^{\prime } x +2 y = 8 x^{2} \]
i.c.

[_linear]

1568

\[ {}y^{\prime } x -2 y = -x^{2} \]
i.c.

[_linear]

1569

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

1570

\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1+\left (x -1\right ) \sec \left (x \right )^{2}}{\left (x -1\right )^{3}} \]
i.c.

[_linear]

1571

\[ {}\left (x +2\right ) y^{\prime }+4 y = \frac {2 x^{2}+1}{x \left (x +2\right )^{3}} \]
i.c.

[_linear]

1572

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 y x = x \left (x^{2}-1\right ) \]
i.c.

[_linear]

1573

\[ {}y^{\prime } x -2 y = -1 \]
i.c.

[_separable]

1584

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x = 0 \]

[_separable]

1591

\[ {}y^{\prime }+2 x \left (1+y\right ) = 0 \]
i.c.

[_separable]

1599

\[ {}\left (x +1\right ) \left (x -2\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1613

\[ {}y^{\prime } = 2 y x \]

[_separable]

1642

\[ {}y^{\prime } = \frac {x +y}{x} \]

[_linear]

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1681

\[ {}3 y \cos \left (x \right )+4 x \,{\mathrm e}^{x}+2 x^{3} y+\left (3 \sin \left (x \right )+3\right ) y^{\prime } = 0 \]

[_linear]

1700

\[ {}\sin \left (x \right )-y \sin \left (x \right )-2 \cos \left (x \right )+y^{\prime } \cos \left (x \right ) = 0 \]
i.c.

[_linear]

1701

\[ {}\left (2 x -1\right ) \left (-1+y\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1713

\[ {}y-y^{\prime } x = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1716

\[ {}5 y x +2 y+5+2 y^{\prime } x = 0 \]

[_linear]

1717

\[ {}y x +x +2 y+1+\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

1722

\[ {}x^{2} y+4 y x +2 y+\left (x^{2}+x \right ) y^{\prime } = 0 \]

[_separable]

1723

\[ {}-y+\left (x^{4}-x \right ) y^{\prime } = 0 \]

[_separable]

1730

\[ {}a \cos \left (x \right ) y-y^{2} \sin \left (x \right )+\left (b \cos \left (x \right ) y-x \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

[_linear]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

2294

\[ {}y^{\prime }+\sin \left (t \right ) y = 0 \]
i.c.

[_separable]

2295

\[ {}y^{\prime }+{\mathrm e}^{t^{2}} y = 0 \]
i.c.

[_separable]

2296

\[ {}y^{\prime }-2 t y = t \]

[_separable]

2297

\[ {}2 t y+y^{\prime } = t \]
i.c.

[_separable]

2298

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

2299

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2300

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2301

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

2302

\[ {}y^{\prime }+y = {\mathrm e}^{t} t \]

[[_linear, ‘class A‘]]

2303

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

2304

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2305

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2306

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2307

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

[_separable]

2308

\[ {}y^{\prime }-2 t y = t \]
i.c.

[_separable]

2309

\[ {}t y+y^{\prime } = 1+t \]
i.c.

[_linear]

2310

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

2311

\[ {}y^{\prime }-2 t y = 1 \]
i.c.

[_linear]

2312

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

2313

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2314

\[ {}\frac {y}{t}+y^{\prime } = \frac {1}{t^{2}} \]

[_linear]

2315

\[ {}y^{\prime }+\frac {y}{\sqrt {t}} = {\mathrm e}^{\frac {\sqrt {t}}{2}} \]

[_linear]

2316

\[ {}\frac {y}{t}+y^{\prime } = \cos \left (t \right )+\frac {\sin \left (t \right )}{t} \]

[_linear]

2317

\[ {}\tan \left (t \right ) y+y^{\prime } = \cos \left (t \right ) \sin \left (t \right ) \]

[_linear]

2319

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2329

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2360

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2474

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

2475

\[ {}y^{\prime }+y = {\mathrm e}^{t} t \]

[[_linear, ‘class A‘]]

2476

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2478

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2481

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2482

\[ {}y^{\prime }-2 t y = t \]
i.c.

[_separable]

2483

\[ {}t y+y^{\prime } = 1+t \]
i.c.

[_linear]

2484

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

2485

\[ {}y^{\prime }-2 t y = 1 \]
i.c.

[_linear]

2486

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

2487

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2488

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

2490

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2500

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2519

\[ {}y^{\prime } = 2 t \left (y+1\right ) \]
i.c.

[_separable]

2535

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2774

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x = 0 \]

[_separable]

2777

\[ {}y^{\prime } x +y = 0 \]

[_separable]

2778

\[ {}y^{\prime } = 2 y x \]

[_separable]

2781

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

2782

\[ {}\tan \left (x \right ) y^{\prime }-y = 1 \]

[_separable]

2783

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2790

\[ {}y x +\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

2791

\[ {}y = y x +x^{2} y^{\prime } \]

[_separable]

2794

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

2795

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

2804

\[ {}x +y = y^{\prime } x \]

[_linear]

2855

\[ {}y \,{\mathrm e}^{x}-2 x +{\mathrm e}^{x} y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

2858

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

[_separable]

2870

\[ {}y^{\prime } x +\ln \left (x \right )-y = 0 \]

[_linear]

2886

\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2891

\[ {}y^{\prime } x +2 y = x^{2} \]

[_linear]

2892

\[ {}y^{\prime }-y x = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_linear]

2893

\[ {}y^{\prime }+2 y x = 2 x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2894

\[ {}y^{\prime } = y+3 x^{2} {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

2895

\[ {}x^{\prime }+x = {\mathrm e}^{-y} \]

[[_linear, ‘class A‘]]

2896

\[ {}y x^{\prime }+\left (1+y \right ) x = {\mathrm e}^{y} \]

[_linear]

2898

\[ {}y^{\prime } x -2 x^{4}-2 y = 0 \]

[_linear]

2900

\[ {}y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1 \]

[_linear]

2901

\[ {}y^{\prime } x = 5 y+x +1 \]

[_linear]

2902

\[ {}x^{2} y^{\prime }+y-2 y x -2 x^{2} = 0 \]

[_linear]

2903

\[ {}2 y+\left (x +1\right ) y^{\prime } = \frac {{\mathrm e}^{x}}{x +1} \]

[_linear]

2906

\[ {}\cos \left (\theta \right ) r^{\prime } = 2+2 r \sin \left (\theta \right ) \]

[_linear]

2907

\[ {}\sin \left (\theta \right ) r^{\prime }+1+r \tan \left (\theta \right ) = \cos \left (\theta \right ) \]

[_linear]

2908

\[ {}y x^{\prime } = 2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \]

[_linear]

2910

\[ {}y^{\prime }+y \cot \left (x \right )-\sec \left (x \right ) = 0 \]

[_linear]

2912

\[ {}2 y-y x -3+y^{\prime } x = 0 \]
i.c.

[_linear]

2914

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right )^{2}+4 y = 0 \]
i.c.

[_linear]

2937

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

2940

\[ {}x \ln \left (x \right ) y^{\prime }-x +y = 0 \]

[_linear]

2953

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

[_separable]

2960

\[ {}y^{\prime }+x +y \cot \left (x \right ) = 0 \]

[_linear]

2979

\[ {}y^{\prime } x = x^{4}+4 y \]
i.c.

[_linear]

2984

\[ {}2 y+y^{\prime } = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

2988

\[ {}2 y x -2 y+1+x \left (x -1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

3102

\[ {}y^{\prime }+P \left (x \right ) y = Q \left (x \right ) \]

[_linear]

3218

\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \]

[_separable]

3226

\[ {}{y^{\prime }}^{3}+\left (x +y-2 y x \right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3267

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

[_separable]

3342

\[ {}y^{\prime } = y x \]

[_separable]

3364

\[ {}y^{\prime } = \frac {y}{t} \]

[_separable]

3371

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

[_separable]

3373

\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \]

[[_linear, ‘class A‘]]

3374

\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

3375

\[ {}y^{\prime } = t -y \]

[[_linear, ‘class A‘]]

3376

\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \]

[_linear]

3377

\[ {}y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right ) \]

[_linear]

3378

\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \]

[_linear]

3379

\[ {}y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right )^{3} \]

[_linear]

3382

\[ {}t y^{\prime } = y+t^{3} \]
i.c.

[_linear]

3383

\[ {}y^{\prime } = -\tan \left (t \right ) y+\sec \left (t \right ) \]
i.c.

[_linear]

3384

\[ {}y^{\prime } = \frac {2 y}{1+t} \]
i.c.

[_separable]

3385

\[ {}t y^{\prime } = -y+t^{3} \]
i.c.

[_linear]

3386

\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \]
i.c.

[_separable]

3387

\[ {}t \ln \left (t \right ) y^{\prime } = t \ln \left (t \right )-y \]
i.c.

[_linear]

3388

\[ {}y^{\prime } = \frac {2 y}{-t^{2}+1}+3 \]
i.c.

[_linear]

3389

\[ {}y^{\prime } = -\cot \left (t \right ) y+6 \cos \left (t \right )^{2} \]
i.c.

[_linear]

3391

\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \]

[_separable]

3394

\[ {}2 y^{\prime } x +3 x +y = 0 \]

[_linear]

3396

\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 y x = \left (-x^{2}+1\right )^{{3}/{2}} \]

[_linear]

3397

\[ {}y^{\prime }-y \cot \left (x \right )+\frac {1}{\sin \left (x \right )} = 0 \]

[_linear]

3405

\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \]

[_linear]

3407

\[ {}y^{\prime }-\frac {y}{x} = 1 \]
i.c.

[_linear]

3408

\[ {}y^{\prime }-y \tan \left (x \right ) = 1 \]
i.c.

[_linear]

3411

\[ {}y^{\prime } \sin \left (x \right )+2 y \cos \left (x \right ) = 1 \]
i.c.

[_linear]

3448

\[ {}y^{\prime } = 2 y x \]

[_separable]

3451

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3452

\[ {}y-\left (x -2\right ) y^{\prime } = 0 \]

[_separable]

3453

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3454

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3457

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+32 \]

[_linear]

3458

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3460

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = a x \]
i.c.

[_separable]

3463

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

3464

\[ {}x^{2} y^{\prime }-4 y x = x^{7} \sin \left (x \right ) \]

[_linear]

3465

\[ {}y^{\prime }+2 y x = 2 x^{3} \]

[_linear]

3466

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = 4 x \]

[_linear]

3467

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

[_linear]

3468

\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \]

[_linear]

3469

\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \]

[_linear]

3470

\[ {}y^{\prime }-y \tan \left (x \right ) = 8 \sin \left (x \right )^{3} \]

[_linear]

3471

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

3472

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

3473

\[ {}1-y \sin \left (x \right )-y^{\prime } \cos \left (x \right ) = 0 \]

[_linear]

3474

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]

[_linear]

3475

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

[[_linear, ‘class A‘]]

3495

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3526

\[ {}y^{\prime } = 2 y x \]

[_separable]

3529

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3530

\[ {}y-\left (x -1\right ) y^{\prime } = 0 \]

[_separable]

3531

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3532

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3535

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

3536

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3538

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = a x \]
i.c.

[_separable]

3543

\[ {}y^{\prime }+y = 4 \,{\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

3544

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

[_linear]

3545

\[ {}x^{2} y^{\prime }-4 y x = x^{7} \sin \left (x \right ) \]

[_linear]

3546

\[ {}y^{\prime }+2 y x = 2 x^{3} \]

[_linear]

3547

\[ {}y^{\prime }+\frac {2 x y}{-x^{2}+1} = 4 x \]

[_linear]

3548

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

[_linear]

3549

\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \]

[_linear]

3550

\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \]

[_linear]

3551

\[ {}y^{\prime }-y \tan \left (x \right ) = 8 \sin \left (x \right )^{3} \]

[_linear]

3552

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

3553

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

3554

\[ {}1-y \sin \left (x \right )-y^{\prime } \cos \left (x \right ) = 0 \]

[_linear]

3555

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]

[_linear]

3556

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

[[_linear, ‘class A‘]]

3557

\[ {}y^{\prime }+\frac {m y}{x} = \ln \left (x \right ) \]

[_linear]

3558

\[ {}y^{\prime }+\frac {2 y}{x} = 4 x \]
i.c.

[_linear]

3559

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \sin \left (2 x \right ) \]
i.c.

[_linear]

3560

\[ {}x^{\prime }+\frac {2 x}{4-t} = 5 \]
i.c.

[_linear]

3561

\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \]
i.c.

[[_linear, ‘class A‘]]

3562

\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & x \le 1 \\ 0 & 1<x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3563

\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1-x & x <1 \\ 0 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3565

\[ {}y^{\prime }+\frac {y}{x} = \cos \left (x \right ) \]

[_linear]

3566

\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

3567

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

3568

\[ {}-y+y^{\prime } x = x^{2} \ln \left (x \right ) \]

[_linear]

3575

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

3908

\[ {}3 y-2 x +\left (3 x -2\right ) y^{\prime } = 0 \]

[_linear]

3912

\[ {}y^{\prime } = \frac {y-2 x}{x} \]

[_linear]

3915

\[ {}y^{\prime }+y = x^{2}+2 \]

[[_linear, ‘class A‘]]

3916

\[ {}y^{\prime }-y \tan \left (x \right ) = x \]
i.c.

[_linear]

3919

\[ {}y^{\prime } x = x +y \]
i.c.

[_linear]

3922

\[ {}y^{\prime }-3 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

3924

\[ {}y^{\prime } x +2 y = \left (3 x +2\right ) {\mathrm e}^{3 x} \]
i.c.

[_linear]

3931

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 1 \]
i.c.

[_linear]

3934

\[ {}y^{\prime }-y = x^{3} \]

[[_linear, ‘class A‘]]

3935

\[ {}y^{\prime }+y \cot \left (x \right ) = x \]

[_linear]

3936

\[ {}y^{\prime }+y \cot \left (x \right ) = \tan \left (x \right ) \]

[_linear]

3937

\[ {}y^{\prime }+y \tan \left (x \right ) = \cot \left (x \right ) \]

[_linear]

3938

\[ {}y^{\prime }+y \ln \left (x \right ) = x^{-x} \]

[_linear]

3939

\[ {}y^{\prime } x +y = x \]

[_linear]

3940

\[ {}-y+y^{\prime } x = x^{3} \]

[_linear]

3941

\[ {}y^{\prime } x +n y = x^{n} \]

[_linear]

3942

\[ {}y^{\prime } x -n y = x^{n} \]

[_linear]

3943

\[ {}\left (x^{3}+x \right ) y^{\prime }+y = x \]

[_linear]

3944

\[ {}\cot \left (x \right ) y^{\prime }+y = x \]

[_linear]

3945

\[ {}\cot \left (x \right ) y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

3946

\[ {}\tan \left (x \right ) y^{\prime }+y = \cot \left (x \right ) \]

[_linear]

3947

\[ {}\tan \left (x \right ) y^{\prime } = y-\cos \left (x \right ) \]

[_linear]

3948

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

3949

\[ {}y^{\prime } \cos \left (x \right )+y = \sin \left (2 x \right ) \]

[_linear]

3950

\[ {}y^{\prime }+y \sin \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

3951

\[ {}y^{\prime } \sin \left (x \right )+y = \sin \left (2 x \right ) \]

[_linear]

3952

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+y = 2 x \]

[_linear]

3953

\[ {}\sqrt {x^{2}+1}\, y^{\prime }-y = 2 \sqrt {x^{2}+1} \]

[_linear]

3954

\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, \left (2 y^{\prime }-3\right )+y = 0 \]

[_linear]

3955

\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, y^{\prime }+y = \sqrt {x +a}-\sqrt {x +b} \]

[_linear]

3962

\[ {}y^{\prime } x = y \]

[_separable]

3963

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

3964

\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \]

[_separable]

3965

\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \]

[_separable]

3967

\[ {}y^{\prime }+2 y x = 0 \]
i.c.

[_separable]

3968

\[ {}\cot \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

3970

\[ {}y^{\prime }-2 y x = 2 x \]
i.c.

[_separable]

3971

\[ {}y^{\prime } x = y x +y \]
i.c.

[_separable]

3976

\[ {}\left (1-x \right ) y^{\prime } = y x \]

[_separable]

3977

\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

3997

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

4000

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

4001

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

4012

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

4013

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

4014

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 y x = \cot \left (x \right ) \]

[_linear]

4015

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

4016

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

4017

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

4023

\[ {}y^{\prime } x +y = x \cos \left (x \right ) \]

[_linear]

4026

\[ {}y+x^{2} = y^{\prime } x \]

[_linear]

4027

\[ {}y^{\prime } x +y = x^{2} \cos \left (x \right ) \]

[_linear]

4032

\[ {}y^{\prime }+2 y x = {\mathrm e}^{-x^{2}} \]

[_linear]

4034

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 y x = 4 x^{3} \]

[_linear]

4038

\[ {}2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

4040

\[ {}\ln \left (x \right ) y^{\prime }+\frac {x +y}{x} = 0 \]

[_linear]

4102

\[ {}1+y \cos \left (x \right )-y^{\prime } \sin \left (x \right ) = 0 \]

[_linear]

4110

\[ {}\left (2 x +3\right ) y^{\prime } = y+\sqrt {2 x +3} \]

[_linear]

4112

\[ {}y^{\prime } = 1+3 y \tan \left (x \right ) \]

[_linear]

4113

\[ {}\left (\cos \left (x \right )+1\right ) y^{\prime } = \sin \left (x \right ) \left (\sin \left (x \right )+\sin \left (x \right ) \cos \left (x \right )-y\right ) \]

[_linear]

4114

\[ {}y^{\prime } = \left (\sin \left (x \right )^{2}-y\right ) \cos \left (x \right ) \]

[_linear]

4115

\[ {}\left (x +1\right ) y^{\prime }-y = x \left (x +1\right )^{2} \]

[_linear]

4141

\[ {}y^{\prime } = \frac {2+y}{x +1} \]

[_separable]

4169

\[ {}y^{\prime } = x +\sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

4170

\[ {}y^{\prime } = x^{2}+3 \cosh \left (x \right )+2 y \]

[[_linear, ‘class A‘]]

4171

\[ {}y^{\prime } = a +b x +c y \]

[[_linear, ‘class A‘]]

4172

\[ {}y^{\prime } = a \cos \left (b x +c \right )+k y \]

[[_linear, ‘class A‘]]

4173

\[ {}y^{\prime } = a \sin \left (b x +c \right )+k y \]

[[_linear, ‘class A‘]]

4174

\[ {}y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \]

[[_linear, ‘class A‘]]

4175

\[ {}y^{\prime } = x \left (x^{2}-y\right ) \]

[_linear]

4176

\[ {}y^{\prime } = x \left ({\mathrm e}^{-x^{2}}+a y\right ) \]

[_linear]

4177

\[ {}y^{\prime } = x^{2} \left (a \,x^{3}+b y\right ) \]

[_linear]

4178

\[ {}y^{\prime } = a \,x^{n} y \]

[_separable]

4179

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (x \right )+y \cos \left (x \right ) \]

[_linear]

4180

\[ {}y^{\prime } = {\mathrm e}^{\sin \left (x \right )}+y \cos \left (x \right ) \]

[_linear]

4181

\[ {}y^{\prime } = y \cot \left (x \right ) \]

[_separable]

4182

\[ {}y^{\prime } = 1-y \cot \left (x \right ) \]

[_linear]

4183

\[ {}y^{\prime } = x \csc \left (x \right )-y \cot \left (x \right ) \]

[_linear]

4184

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

[_separable]

4185

\[ {}y^{\prime } = \sec \left (x \right )-y \cot \left (x \right ) \]

[_linear]

4186

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )+y \cot \left (x \right ) \]

[_linear]

4187

\[ {}y^{\prime }+\csc \left (x \right )+2 y \cot \left (x \right ) = 0 \]

[_linear]

4188

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \sec \left (x \right )^{2}-2 y \cot \left (2 x \right ) \]

[_linear]

4189

\[ {}y^{\prime } = 2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \]

[_linear]

4190

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (\sin \left (x \right )^{3}+y\right ) \]

[_linear]

4191

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (1-\tan \left (x \right )^{2}+y\right ) \]

[_linear]

4192

\[ {}y^{\prime } = y \sec \left (x \right ) \]

[_separable]

4193

\[ {}y^{\prime }+\tan \left (x \right ) = \left (1-y\right ) \sec \left (x \right ) \]

[_linear]

4194

\[ {}y^{\prime } = y \tan \left (x \right ) \]

[_separable]

4195

\[ {}y^{\prime } = \cos \left (x \right )+y \tan \left (x \right ) \]

[_linear]

4196

\[ {}y^{\prime } = \cos \left (x \right )-y \tan \left (x \right ) \]

[_linear]

4197

\[ {}y^{\prime } = \sec \left (x \right )-y \tan \left (x \right ) \]

[_linear]

4198

\[ {}y^{\prime } = \sin \left (2 x \right )+y \tan \left (x \right ) \]

[_linear]

4199

\[ {}y^{\prime } = \sin \left (2 x \right )-y \tan \left (x \right ) \]

[_linear]

4200

\[ {}y^{\prime } = \sin \left (x \right )+2 y \tan \left (x \right ) \]

[_linear]

4201

\[ {}y^{\prime } = 2+2 \sec \left (2 x \right )+2 y \tan \left (2 x \right ) \]

[_linear]

4202

\[ {}y^{\prime } = \csc \left (x \right )+3 y \tan \left (x \right ) \]

[_linear]

4203

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

[_separable]

4204

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x}-y \tanh \left (x \right ) \]

[_linear]

4205

\[ {}y^{\prime } = f \left (x \right ) f^{\prime }\left (x \right )+f^{\prime }\left (x \right ) y \]

[_linear]

4206

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y \]

[_linear]

4239

\[ {}y^{\prime } = \sin \left (x \right ) \left (2 \sec \left (x \right )^{2}-y\right ) \]

[_linear]

4241

\[ {}y^{\prime } = y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \]

[_linear]

4298

\[ {}y^{\prime } = \sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \]

[_linear]

4303

\[ {}y^{\prime } x +x +y = 0 \]

[_linear]

4304

\[ {}y^{\prime } x +x^{2}-y = 0 \]

[_linear]

4305

\[ {}y^{\prime } x = x^{3}-y \]

[_linear]

4306

\[ {}y^{\prime } x = 1+x^{3}+y \]

[_linear]

4307

\[ {}y^{\prime } x = x^{m}+y \]

[_linear]

4308

\[ {}y^{\prime } x = x \sin \left (x \right )-y \]

[_linear]

4309

\[ {}y^{\prime } x = x^{2} \sin \left (x \right )+y \]

[_linear]

4310

\[ {}y^{\prime } x = x^{n} \ln \left (x \right )-y \]

[_linear]

4311

\[ {}y^{\prime } x = \sin \left (x \right )-2 y \]

[_linear]

4312

\[ {}y^{\prime } x = a y \]

[_separable]

4313

\[ {}y^{\prime } x = 1+x +a y \]

[_linear]

4314

\[ {}y^{\prime } x = a x +b y \]

[_linear]

4315

\[ {}y^{\prime } x = a \,x^{2}+b y \]

[_linear]

4316

\[ {}y^{\prime } x = a +b \,x^{n}+c y \]

[_linear]

4317

\[ {}y^{\prime } x +2+\left (3-x \right ) y = 0 \]

[_linear]

4318

\[ {}y^{\prime } x +x +\left (a x +2\right ) y = 0 \]

[_linear]

4319

\[ {}y^{\prime } x +\left (b x +a \right ) y = 0 \]

[_separable]

4320

\[ {}y^{\prime } x = x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4321

\[ {}y^{\prime } x = a x -\left (-b \,x^{2}+1\right ) y \]

[_linear]

4322

\[ {}y^{\prime } x +x +\left (-a \,x^{2}+2\right ) y = 0 \]

[_linear]

4381

\[ {}\left (x +1\right ) y^{\prime } = x^{3} \left (4+3 x \right )+y \]

[_linear]

4382

\[ {}\left (x +1\right ) y^{\prime } = \left (x +1\right )^{4}+2 y \]

[_linear]

4383

\[ {}\left (x +1\right ) y^{\prime } = {\mathrm e}^{x} \left (x +1\right )^{n +1}+n y \]

[_linear]

4389

\[ {}\left (x +a \right ) y^{\prime } = b x +y \]

[_linear]

4390

\[ {}\left (x +a \right ) y^{\prime }+b \,x^{2}+y = 0 \]

[_linear]

4391

\[ {}\left (x +a \right ) y^{\prime } = 2 \left (x +a \right )^{5}+3 y \]

[_linear]

4392

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

4393

\[ {}\left (x +a \right ) y^{\prime } = b x +c y \]

[_linear]

4396

\[ {}2 y^{\prime } x = 2 x^{3}-y \]

[_linear]

4402

\[ {}\left (1-2 x \right ) y^{\prime } = 16+32 x -6 y \]

[_linear]

4404

\[ {}2 \left (1-x \right ) y^{\prime } = 4 x \sqrt {1-x}+y \]

[_linear]

4409

\[ {}x^{2} y^{\prime } = -y+a \]

[_separable]

4410

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}+y x \]

[_linear]

4411

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}-y x \]

[_linear]

4412

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

[_linear]

4413

\[ {}x^{2} y^{\prime } = a +b x y \]

[_linear]

4414

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

[_separable]

4415

\[ {}x^{2} y^{\prime }+x \left (x +2\right ) y = x \left (1-{\mathrm e}^{-2 x}\right )-2 \]

[_linear]

4416

\[ {}x^{2} y^{\prime }+2 x \left (1-x \right ) y = {\mathrm e}^{x} \left (2 \,{\mathrm e}^{x}-1\right ) \]

[_linear]

4437

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-x^{2}+y \]

[_linear]

4438

\[ {}\left (-x^{2}+1\right ) y^{\prime }+1 = y x \]

[_linear]

4439

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 5-y x \]

[_linear]

4440

\[ {}\left (x^{2}+1\right ) y^{\prime }+a +y x = 0 \]

[_linear]

4441

\[ {}\left (x^{2}+1\right ) y^{\prime }+a -y x = 0 \]

[_linear]

4442

\[ {}\left (-x^{2}+1\right ) y^{\prime }+a -y x = 0 \]

[_linear]

4443

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +y x = 0 \]

[_separable]

4444

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2}+y x = 0 \]

[_linear]

4445

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x^{2}+y x = 0 \]

[_linear]

4446

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (x^{2}+1\right )-y x \]

[_linear]

4447

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3 x^{2}-y\right ) \]

[_linear]

4448

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 y x = 0 \]

[_separable]

4449

\[ {}\left (x^{2}+1\right ) y^{\prime } = 2 x \left (x -y\right ) \]

[_linear]

4450

\[ {}\left (x^{2}+1\right ) y^{\prime } = 2 x \left (x^{2}+1\right )^{2}+2 y x \]

[_linear]

4451

\[ {}\left (-x^{2}+1\right ) y^{\prime }+\cos \left (x \right ) = 2 y x \]

[_linear]

4452

\[ {}\left (x^{2}+1\right ) y^{\prime } = \tan \left (x \right )-2 y x \]

[_linear]

4453

\[ {}\left (-x^{2}+1\right ) y^{\prime } = a +4 y x \]

[_linear]

4454

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y \]

[_separable]

4463

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+x^{2}-y \,\operatorname {arccot}\left (x \right ) \]

[_linear]

4465

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = b +y x \]

[_linear]

4466

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right ) \]

[_separable]

4470

\[ {}x \left (1-x \right ) y^{\prime } = a +\left (x +1\right ) y \]

[_linear]

4471

\[ {}x \left (1-x \right ) y^{\prime } = 2+2 y x \]

[_linear]

4472

\[ {}x \left (1-x \right ) y^{\prime } = 2 y x -2 \]

[_linear]

4473

\[ {}x \left (x +1\right ) y^{\prime } = \left (1-2 x \right ) y \]

[_separable]

4474

\[ {}x \left (1-x \right ) y^{\prime }+\left (2 x +1\right ) y = a \]

[_linear]

4475

\[ {}x \left (1-x \right ) y^{\prime } = a +2 \left (2-x \right ) y \]

[_linear]

4476

\[ {}x \left (1-x \right ) y^{\prime }+2-3 y x +y = 0 \]

[_linear]

4477

\[ {}x \left (x +1\right ) y^{\prime } = \left (x +1\right ) \left (x^{2}-1\right )+\left (x^{2}+x -1\right ) y \]

[_linear]

4478

\[ {}\left (x -2\right ) \left (x -3\right ) y^{\prime }+x^{2}-8 y+3 y x = 0 \]

[_linear]

4480

\[ {}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right ) \]

[_separable]

4482

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0 \]

[_separable]

4483

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = \left (x -a \right ) \left (x -b \right )+\left (2 x -a -b \right ) y \]

[_linear]

4487

\[ {}2 x^{2} y^{\prime } = y \]

[_separable]

4488

\[ {}2 x^{2} y^{\prime }+x \cot \left (x \right )-1+2 x^{2} y \cot \left (x \right ) = 0 \]

[_linear]

4491

\[ {}2 \left (-x^{2}+1\right ) y^{\prime } = \sqrt {-x^{2}+1}+\left (x +1\right ) y \]

[_linear]

4492

\[ {}x \left (1-2 x \right ) y^{\prime }+1+\left (1-4 x \right ) y = 0 \]

[_linear]

4494

\[ {}2 x \left (1-x \right ) y^{\prime }+x +\left (1-2 x \right ) y = 0 \]

[_linear]

4496

\[ {}2 \left (x^{2}+x +1\right ) y^{\prime } = 1+8 x^{2}-\left (2 x +1\right ) y \]

[_linear]

4497

\[ {}4 \left (x^{2}+1\right ) y^{\prime }-4 y x -x^{2} = 0 \]

[_linear]

4501

\[ {}x \left (a x +1\right ) y^{\prime }+a -y = 0 \]

[_separable]

4503

\[ {}x^{3} y^{\prime } = a +b \,x^{2} y \]

[_linear]

4504

\[ {}x^{3} y^{\prime } = 3-x^{2}+x^{2} y \]

[_linear]

4513

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{2}+y \]

[_linear]

4514

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{2}+y \]

[_linear]

4515

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{3}+y \]

[_linear]

4516

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a -x^{2} y \]

[_linear]

4517

\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \]

[_separable]

4518

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \]

[_separable]

4519

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4520

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = x^{3} \left (-x^{2}+1\right )+\left (-2 x^{2}+1\right ) y \]

[_linear]

4521

\[ {}x \left (x^{2}+1\right ) y^{\prime } = 2-4 x^{2} y \]

[_linear]

4522

\[ {}x \left (x^{2}+1\right ) y^{\prime } = x -\left (5 x^{2}+3\right ) y \]

[_linear]

4533

\[ {}x \left (-x^{3}+1\right ) y^{\prime } = 2 x -\left (-4 x^{3}+1\right ) y \]

[_linear]

4536

\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

[_separable]

4538

\[ {}x^{5} y^{\prime } = 1-3 x^{4} y \]

[_linear]

4541

\[ {}x^{n} y^{\prime } = a +b \,x^{n -1} y \]

[_linear]

4547

\[ {}\sqrt {x^{2}+1}\, y^{\prime } = 2 x -y \]

[_linear]

4550

\[ {}y^{\prime } \sqrt {a^{2}+x^{2}}+x +y = \sqrt {a^{2}+x^{2}} \]

[_linear]

4569

\[ {}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \]

[_separable]

4570

\[ {}\left (1-\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

4571

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\sin \left (x \right )+\cos \left (x \right )\right ) = 0 \]

[_separable]

4572

\[ {}\left (\operatorname {a0} +\operatorname {a1} \sin \left (x \right )^{2}\right ) y^{\prime }+\operatorname {a2} x \left (\operatorname {a3} +\operatorname {a1} \sin \left (x \right )^{2}\right )+\operatorname {a1} y \sin \left (2 x \right ) = 0 \]

[_linear]

4573

\[ {}\left (x -{\mathrm e}^{x}\right ) y^{\prime }+x \,{\mathrm e}^{x}+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

[_linear]

4574

\[ {}y^{\prime } x \ln \left (x \right ) = a x \left (1+\ln \left (x \right )\right )-y \]

[_linear]

4596

\[ {}1-y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

4694

\[ {}\left (x +a \right ) \left (x +b \right ) y^{\prime } = y x \]

[_separable]

4905

\[ {}{y^{\prime }}^{2} = x^{2} y^{2} \]

[_separable]

4951

\[ {}{y^{\prime }}^{2}+y y^{\prime } = x \left (x +y\right ) \]

[_quadrature]

4964

\[ {}{y^{\prime }}^{2}-\left (1+2 y x \right ) y^{\prime }+2 y x = 0 \]

[_quadrature]

4966

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

4969

\[ {}{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

4971

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

5011

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5015

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

5016

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

5032

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5034

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

5036

\[ {}x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right ) = 0 \]

[_separable]

5045

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

5047

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

5049

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

5061

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \]

[_separable]

5063

\[ {}4 x^{2} {y^{\prime }}^{2}-4 x y y^{\prime } = 8 x^{3}-y^{2} \]

[_linear]

5099

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

5100

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

5101

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

5104

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x = 0 \]

[_separable]

5175

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

5176

\[ {}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+y x +y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5184

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \]

[_quadrature]

5245

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x = 0 \]

[_separable]

5252

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{2} \]

[_linear]

5272

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

[_linear]

5273

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

5274

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

5275

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

5276

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

5330

\[ {}\frac {y-y^{\prime } x}{y^{2}+y^{\prime }} = \frac {y-y^{\prime } x}{1+x^{2} y^{\prime }} \]

[_separable]

5351

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

5399

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

5402

\[ {}x^{\prime }+2 x y = {\mathrm e}^{-y^{2}} \]

[_linear]

5403

\[ {}r^{\prime } = \left (r+{\mathrm e}^{-\theta }\right ) \tan \left (\theta \right ) \]

[_linear]

5404

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 1 \]

[_linear]

5407

\[ {}\tan \left (\theta \right ) r^{\prime }-r = \tan \left (\theta \right )^{2} \]

[_linear]

5408

\[ {}2 y+y^{\prime } = 3 \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

5409

\[ {}2 y+y^{\prime } = \frac {3 \,{\mathrm e}^{-2 x}}{4} \]

[[_linear, ‘class A‘]]

5410

\[ {}2 y+y^{\prime } = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

5411

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{2 x} \]

[_linear]

5412

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

5413

\[ {}y^{\prime } x +y = x \sin \left (x \right ) \]

[_linear]

5414

\[ {}-y+y^{\prime } x = x^{2} \sin \left (x \right ) \]

[_linear]

5418

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

5440

\[ {}2 y-x y \ln \left (x \right )-2 y^{\prime } x \ln \left (x \right ) = 0 \]

[_separable]

5441

\[ {}y^{\prime }+a y = k \,{\mathrm e}^{b x} \]

[[_linear, ‘class A‘]]

5445

\[ {}y^{\prime }+a y = b \sin \left (k x \right ) \]

[[_linear, ‘class A‘]]

5449

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]

[_linear]

5452

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

5457

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right ) = 0 \]

[_linear]

5462

\[ {}y^{\prime } \cos \left (x \right )+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right ) = 0 \]

[_linear]

5585

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

5589

\[ {}y^{\prime } = {\mathrm e}^{a x}+a y \]

[[_linear, ‘class A‘]]

5653

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

5662

\[ {}y^{\prime }-y x = x \]
i.c.

[_separable]

5665

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

5666

\[ {}x^{2} y^{\prime }+3 y x = 1 \]

[_linear]

5667

\[ {}y^{\prime }+2 y x -x \,{\mathrm e}^{-x^{2}} = 0 \]

[_linear]

5668

\[ {}2 y^{\prime } x +y = 2 x^{{5}/{2}} \]

[_linear]

5669

\[ {}y^{\prime } \cos \left (x \right )+y = \cos \left (x \right )^{2} \]

[_linear]

5670

\[ {}y^{\prime }+\frac {y}{\sqrt {x^{2}+1}} = \frac {1}{x +\sqrt {x^{2}+1}} \]

[_linear]

5671

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime }+2 y \,{\mathrm e}^{x} = \left (1+{\mathrm e}^{x}\right ) {\mathrm e}^{x} \]

[_linear]

5672

\[ {}y^{\prime } x \ln \left (x \right )+y = \ln \left (x \right ) \]

[_linear]

5673

\[ {}\left (-x^{2}+1\right ) y^{\prime } = y x +2 x \sqrt {-x^{2}+1} \]

[_linear]

5674

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \,{\mathrm e}^{x} \]

[_linear]

5675

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

5676

\[ {}x^{\prime } = \cos \left (y \right )-x \tan \left (y \right ) \]

[_linear]

5677

\[ {}x^{\prime }+x-{\mathrm e}^{y} = 0 \]

[[_linear, ‘class A‘]]

5678

\[ {}x^{\prime } = \frac {3 y^{{2}/{3}}-x}{3 y} \]

[_linear]

5691

\[ {}\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

[_linear]

5768

\[ {}x^{2} y^{\prime }-y x = \frac {1}{x} \]

[_linear]

5778

\[ {}y+2 x -y^{\prime } x = 0 \]

[_linear]

5786

\[ {}\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right ) = 0 \]

[_linear]

5790

\[ {}\sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2} = r \cos \left (\theta \right )^{2} \]

[_linear]

5792

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

5793

\[ {}-y+y^{\prime } x = x^{2} \]
i.c.

[_linear]

5797

\[ {}y^{\prime } x = y x +y \]

[_separable]

5799

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

5801

\[ {}y^{\prime } x = y \]

[_separable]

5823

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

5833

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

5840

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

5845

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

5854

\[ {}x^{2} y^{\prime }+\sin \left (x \right )-y = 0 \]

[_linear]

5856

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

5857

\[ {}3 t = {\mathrm e}^{t} y^{\prime }+\ln \left (t \right ) y \]

[_linear]

5859

\[ {}3 r = r^{\prime }-\theta ^{3} \]

[[_linear, ‘class A‘]]

5860

\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \]

[[_linear, ‘class A‘]]

5861

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

[_linear]

5862

\[ {}r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right ) \]

[_linear]

5863

\[ {}y^{\prime } x +2 y = \frac {1}{x^{3}} \]

[_linear]

5864

\[ {}t +y+1-y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

5865

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

[[_linear, ‘class A‘]]

5866

\[ {}y x^{\prime }+2 x = 5 y^{3} \]

[_linear]

5867

\[ {}y^{\prime } x +3 y+3 x^{2} = \frac {\sin \left (x \right )}{x} \]

[_linear]

5868

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x -x = 0 \]

[_separable]

5869

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2} y = \left (x +1\right ) \sqrt {-x^{2}+1} \]

[_linear]

5870

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]
i.c.

[_linear]

5871

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]
i.c.

[[_linear, ‘class A‘]]

5872

\[ {}t^{2} x^{\prime }+3 x t = t^{4} \ln \left (t \right )+1 \]
i.c.

[_linear]

5873

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]
i.c.

[_linear]

5874

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 2 x \cos \left (x \right )^{2} \]
i.c.

[_linear]

5875

\[ {}y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = x \sin \left (x \right ) \]
i.c.

[_linear]

5876

\[ {}y^{\prime }+y \sqrt {1+\sin \left (x \right )^{2}} = x \]
i.c.

[_linear]

5879

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

[_linear]

5880

\[ {}x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \]
i.c.

[[_linear, ‘class A‘]]

5882

\[ {}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0 \]

[_linear]

5883

\[ {}x^{{10}/{3}}-2 y+y^{\prime } x = 0 \]

[_linear]

5901

\[ {}y^{\prime }-4 y = 32 x^{2} \]

[[_linear, ‘class A‘]]

5903

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

[_linear]

5959

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

5960

\[ {}x^{2} y^{\prime }+2 y x -x +1 = 0 \]
i.c.

[_linear]

5961

\[ {}y^{\prime }+y = \left (x +1\right )^{2} \]
i.c.

[[_linear, ‘class A‘]]

5962

\[ {}x^{2} y^{\prime }+2 y x = \sinh \left (x \right ) \]
i.c.

[_linear]

5963

\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \]

[_linear]

5964

\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \]

[_linear]

5965

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y x \]

[_linear]

5976

\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \]

[_linear]

5977

\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \]

[_linear]

5981

\[ {}2 y+y^{\prime } = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

5982

\[ {}-y+y^{\prime } x = x^{2} \]

[_linear]

5986

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x = x \]

[_separable]

5987

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \sinh \left (x \right ) \]

[_linear]

5988

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

5992

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

6001

\[ {}-y+y^{\prime } x = x^{3}+3 x^{2}-2 x \]

[_linear]

6002

\[ {}y^{\prime }+y \tan \left (x \right ) = \sin \left (x \right ) \]

[_linear]

6003

\[ {}-y+y^{\prime } x = x^{3} \cos \left (x \right ) \]
i.c.

[_linear]

6004

\[ {}\left (x^{2}+1\right ) y^{\prime }+3 y x = 5 x \]
i.c.

[_separable]

6005

\[ {}y^{\prime }+y \cot \left (x \right ) = 5 \,{\mathrm e}^{\cos \left (x \right )} \]
i.c.

[_linear]

6016

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1+y x \]

[_linear]

6020

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

[_separable]

6021

\[ {}y^{\prime }-y \tan \left (x \right ) = \cos \left (x \right )-2 x \sin \left (x \right ) \]
i.c.

[_linear]

6023

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (1+y\right ) \]

[_separable]

6024

\[ {}y^{\prime } x +2 y = 3 x -1 \]
i.c.

[_linear]

6027

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (2 x \right ) \]
i.c.

[_linear]

6031

\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \]

[_linear]

6032

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]
i.c.

[_linear]

6034

\[ {}y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y = \frac {1}{-x^{2}+1} \]

[_linear]

6035

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x = \left (x^{2}+1\right )^{{3}/{2}} \]

[_linear]

6038

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_linear]

6076

\[ {}y^{\prime }-5 y = \left (x -1\right ) \sin \left (x \right )+\left (x +1\right ) \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

6077

\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

[[_linear, ‘class A‘]]

6078

\[ {}y^{\prime }-5 y = x^{2} {\mathrm e}^{x}-x \,{\mathrm e}^{5 x} \]

[[_linear, ‘class A‘]]

6084

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

6085

\[ {}y^{\prime }-y = x \,{\mathrm e}^{2 x}+1 \]

[[_linear, ‘class A‘]]

6086

\[ {}y^{\prime }-y = \sin \left (x \right )+\cos \left (2 x \right ) \]

[[_linear, ‘class A‘]]

6094

\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \]

[_linear]

6103

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

6130

\[ {}y^{\prime } x = 2 y \]

[_separable]

6140

\[ {}4 y+y^{\prime } x = 0 \]

[_separable]

6141

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

6143

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

6149

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

6150

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x = 0 \]

[_separable]

6160

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

6202

\[ {}y^{\prime }+y = 2+2 x \]

[[_linear, ‘class A‘]]

6203

\[ {}y^{\prime }-y = y x \]

[_separable]

6204

\[ {}-3 y-\left (x -2\right ) {\mathrm e}^{x}+y^{\prime } x = 0 \]

[_linear]

6205

\[ {}i^{\prime }-6 i = 10 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

6210

\[ {}r^{\prime }+2 r \cos \left (\theta \right )+\sin \left (2 \theta \right ) = 0 \]

[_linear]

6215

\[ {}y^{\prime } x = y \left (1-x \tan \left (x \right )\right )+x^{2} \cos \left (x \right ) \]

[_linear]

6220

\[ {}y^{\prime } x = 2 y+x^{3} {\mathrm e}^{x} \]
i.c.

[_linear]

6221

\[ {}L i^{\prime }+R i = E \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

6227

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

6228

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (-1+y\right ) = 0 \]

[_quadrature]

6355

\[ {}y^{\prime } x = 1-x +2 y \]

[_linear]

6403

\[ {}y^{\prime }+y x = \frac {1}{x^{3}} \]

[_linear]

6620

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

6637

\[ {}y^{\prime } = \left (-1+y\right ) \left (x +1\right ) \]

[_separable]

6644

\[ {}y^{\prime }-y = 2 x -3 \]

[[_linear, ‘class A‘]]

6646

\[ {}y^{\prime }+y = 2 x +1 \]

[[_linear, ‘class A‘]]

6654

\[ {}y-2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

6675

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]
i.c.

[_quadrature]

6677

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

6680

\[ {}y^{\prime }+\frac {x +2 y}{x} = 0 \]

[_linear]

6682

\[ {}y^{\prime } x = x +\frac {y}{2} \]
i.c.

[_linear]

6791

\[ {}y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime } = 0 \]

[_separable]

6819

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

6820

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (x \right ) \cos \left (x \right ) \]

[_linear]

6828

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

6829

\[ {}y^{\prime }-2 y = x^{2}+x \]

[[_linear, ‘class A‘]]

6830

\[ {}3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

6831

\[ {}y^{\prime }+3 y = {\mathrm e}^{i x} \]

[[_linear, ‘class A‘]]

6832

\[ {}y^{\prime }+i y = x \]

[[_linear, ‘class A‘]]

6834

\[ {}L y^{\prime }+R y = E \sin \left (\omega x \right ) \]
i.c.

[[_linear, ‘class A‘]]

6835

\[ {}L y^{\prime }+R y = E \,{\mathrm e}^{i \omega x} \]
i.c.

[[_linear, ‘class A‘]]

6836

\[ {}y^{\prime }+a y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

6837

\[ {}y^{\prime }+2 y x = x \]

[_separable]

6838

\[ {}y^{\prime } x +y = 3 x^{3}-1 \]

[_linear]

6839

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

6840

\[ {}y^{\prime }-y \tan \left (x \right ) = {\mathrm e}^{\sin \left (x \right )} \]

[_linear]

6841

\[ {}y^{\prime }+2 y x = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

6842

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]
i.c.

[_linear]

6843

\[ {}x^{2} y^{\prime }+2 y x = 1 \]

[_linear]

6844

\[ {}2 y+y^{\prime } = b \left (x \right ) \]

[[_linear, ‘class A‘]]

6967

\[ {}y^{\prime } = x^{2} y \]

[_separable]

7010

\[ {}y^{\prime } x = 2 y \]

[_separable]

7039

\[ {}y^{\prime } = 1+2 y x \]

[_linear]

7044

\[ {}y^{\prime } = 4 y x \]

[_separable]

7045

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

7050

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

[_separable]

7054

\[ {}x^{2} y^{\prime } = y \]
i.c.

[_separable]

7061

\[ {}y^{\prime }-y x = 0 \]

[_separable]

7062

\[ {}y^{\prime }+y x = x \]

[_separable]

7063

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

7064

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

7065

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

7066

\[ {}y^{\prime }+2 y x = 0 \]

[_separable]

7067

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

7068

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 y x = \cot \left (x \right ) \]

[_linear]

7069

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

7070

\[ {}y-x +x y \cot \left (x \right )+y^{\prime } x = 0 \]

[_linear]

7071

\[ {}y^{\prime }-y x = 0 \]
i.c.

[_separable]

7072

\[ {}y^{\prime }-2 y x = 6 x \,{\mathrm e}^{x^{2}} \]
i.c.

[_linear]

7074

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]
i.c.

[_linear]

7075

\[ {}y^{\prime }+4 y = {\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

7076

\[ {}x^{2} y^{\prime }+y x = 2 x \]
i.c.

[_separable]

7084

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

7085

\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

[_linear]

7090

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

7094

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

7113

\[ {}y^{\prime } x = 2 x -6 y \]

[_linear]

7121

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

7153

\[ {}y^{\prime } x +y = x \]

[_linear]

7154

\[ {}x^{2} y^{\prime }+y = x^{2} \]

[_linear]

7155

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7159

\[ {}x^{2} y^{\prime }+2 y x = 0 \]

[_separable]

7161

\[ {}-y+y^{\prime } x = 2 x \]
i.c.

[_linear]

7162

\[ {}x^{2} y^{\prime }-2 y = 3 x^{2} \]
i.c.

[_linear]

7168

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

7305

\[ {}y^{\prime }+y = \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

7309

\[ {}y^{\prime } = 2 y x \]

[_separable]

7319

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

7321

\[ {}y^{\prime } x = y \]

[_separable]

7323

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7325

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

7326

\[ {}y^{\prime }+\frac {y}{x} = x \]

[_linear]

7330

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

7451

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

7671

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

7672

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

7673

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

7674

\[ {}x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y = 0 \]

[_separable]

7675

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7676

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

7678

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

[_separable]

7681

\[ {}{y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3} = 0 \]

[_separable]

7688

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \]

[_quadrature]

7770

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

7786

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

7789

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

7933

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

7935

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

[_linear]

7936

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

7959

\[ {}y^{\prime } = x +\frac {\sec \left (x \right ) y}{x} \]

[_linear]

7960

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

7961

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

8028

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

8226

\[ {}y^{\prime } = a x y \]

[_separable]

8227

\[ {}y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

8228

\[ {}y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

8235

\[ {}c y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

8236

\[ {}c y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

8246

\[ {}y^{\prime } = \sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

8248

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \]

[_linear]

8272

\[ {}{y^{\prime }}^{2} = \frac {y^{2}}{x} \]

[_separable]

8384

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

9238

\[ {}y^{\prime }+a y-c \,{\mathrm e}^{b x} = 0 \]

[[_linear, ‘class A‘]]

9239

\[ {}y^{\prime }+a y-b \sin \left (c x \right ) = 0 \]

[[_linear, ‘class A‘]]

9240

\[ {}y^{\prime }+2 y x -x \,{\mathrm e}^{-x^{2}} = 0 \]

[_linear]

9241

\[ {}y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{2 x} = 0 \]

[_linear]

9242

\[ {}y^{\prime }+y \cos \left (x \right )-\frac {\sin \left (2 x \right )}{2} = 0 \]

[_linear]

9243

\[ {}y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{-\sin \left (x \right )} = 0 \]

[_linear]

9244

\[ {}y^{\prime }+y \tan \left (x \right )-\sin \left (2 x \right ) = 0 \]

[_linear]

9245

\[ {}y^{\prime }-\left (\sin \left (\ln \left (x \right )\right )+\cos \left (\ln \left (x \right )\right )+a \right ) y = 0 \]

[_separable]

9246

\[ {}y^{\prime }+f^{\prime }\left (x \right ) y-f \left (x \right ) f^{\prime }\left (x \right ) = 0 \]

[_linear]

9247

\[ {}y^{\prime }+f \left (x \right ) y-g \left (x \right ) = 0 \]

[_linear]

9326

\[ {}y^{\prime } x +y-x \sin \left (x \right ) = 0 \]

[_linear]

9327

\[ {}y^{\prime } x -y-\frac {x}{\ln \left (x \right )} = 0 \]

[_linear]

9328

\[ {}y^{\prime } x -y-x^{2} \sin \left (x \right ) = 0 \]

[_linear]

9329

\[ {}y^{\prime } x -y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0 \]

[_linear]

9330

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

9365

\[ {}2 y^{\prime } x -y-2 x^{3} = 0 \]

[_linear]

9368

\[ {}x^{2} y^{\prime }+y-x = 0 \]

[_linear]

9369

\[ {}x^{2} y^{\prime }-y+x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

[_linear]

9370

\[ {}x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

[_separable]

9383

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x -1 = 0 \]

[_linear]

9384

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x -x \left (x^{2}+1\right ) = 0 \]

[_linear]

9385

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 y x -2 x^{2} = 0 \]

[_linear]

9388

\[ {}\left (x^{2}-1\right ) y^{\prime }-y x +a = 0 \]

[_linear]

9389

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right ) = 0 \]

[_linear]

9396

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime }+3 y x -8 y+x^{2} = 0 \]

[_linear]

9409

\[ {}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0 \]

[_separable]

9410

\[ {}x \left (x^{2}-1\right ) y^{\prime }-\left (2 x^{2}-1\right ) y+a \,x^{3} = 0 \]

[_linear]

9418

\[ {}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0 \]

[_separable]

9427

\[ {}y^{\prime } \sqrt {a^{2}+x^{2}}+y-\sqrt {a^{2}+x^{2}}+x = 0 \]

[_linear]

9428

\[ {}x y^{\prime } \ln \left (x \right )+y-a x \left (1+\ln \left (x \right )\right ) = 0 \]

[_linear]

9431

\[ {}y^{\prime } \cos \left (x \right )+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right ) = 0 \]

[_linear]

9433

\[ {}\sin \left (x \right ) \cos \left (x \right ) y^{\prime }-y-\sin \left (x \right )^{3} = 0 \]

[_linear]

9435

\[ {}\left (a \sin \left (x \right )^{2}+b \right ) y^{\prime }+a y \sin \left (2 x \right )+A x \left (a \sin \left (x \right )^{2}+c \right ) = 0 \]

[_linear]

9628

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

9630

\[ {}{y^{\prime }}^{2}+y \left (-x +y\right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

9672

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

9673

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+3 y^{2} = 0 \]

[_separable]

9674

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

9676

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 y x +x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

9682

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

9714

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

9758

\[ {}{y^{\prime }}^{2}-a x y y^{\prime }+2 a y^{2} = 0 \]

[_separable]

9759

\[ {}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

9798

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x = 0 \]

[_separable]

11226

\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{0} \left (x \right ) \]

[_linear]

11387

\[ {}y^{\prime } = a \ln \left (x \right )^{n} y-a b x \ln \left (x \right )^{n +1} y+b \ln \left (x \right )+b \]

[_linear]

12023

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

12041

\[ {}y^{\prime }+y \cot \left (x \right ) = \sec \left (x \right ) \]

[_linear]

12042

\[ {}y^{\prime } x +\left (x +1\right ) y = {\mathrm e}^{x} \]

[_linear]

12043

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

12044

\[ {}\left (x^{3}+x \right ) y^{\prime }+4 x^{2} y = 2 \]

[_linear]

12045

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

[_linear]

12052

\[ {}y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right ) = 0 \]

[_separable]

12063

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

[_separable]

12065

\[ {}y^{\prime } x -y+2 x^{2} y-x^{3} = 0 \]

[_linear]

12071

\[ {}y^{\prime }-x^{2} y = x^{5} \]

[_linear]

12080

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

12083

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

12085

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

12101

\[ {}\left (2 y^{\prime } x -y\right )^{2} = 8 x^{3} \]

[_linear]

12103

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

12129

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right ) = y^{2} \]

[_separable]

12131

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (y x +2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

12247

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

12252

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

[[_linear, ‘class A‘]]

12253

\[ {}2 t x^{\prime } = x \]

[_separable]

12274

\[ {}x^{\prime } = \frac {2 x}{1+t} \]

[_separable]

12293

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

12297

\[ {}x^{\prime } = 2 t^{3} x-6 \]

[_linear]

12300

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

[_linear]

12303

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

[_linear]

12304

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

12305

\[ {}x^{\prime }+2 x t = {\mathrm e}^{-t^{2}} \]

[_linear]

12306

\[ {}t x^{\prime } = -x+t^{2} \]

[_linear]

12307

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

[[_linear, ‘class A‘]]

12308

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 x t +6 t \]

[_separable]

12309

\[ {}x^{\prime }+\frac {5 x}{t} = 1+t \]
i.c.

[_linear]

12310

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

12311

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]
i.c.

[_linear]

12312

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

12313

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

12314

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

12315

\[ {}y^{\prime }+a y = \sqrt {1+t} \]

[[_linear, ‘class A‘]]

12316

\[ {}x^{\prime } = 2 x t \]

[_separable]

12317

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]
i.c.

[_linear]

12321

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

12328

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12468

\[ {}y^{\prime }+y = x +1 \]

[[_linear, ‘class A‘]]

12474

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

12475

\[ {}y^{\prime }+4 y x = 8 x \]

[_separable]

12480

\[ {}2 y+y^{\prime } = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

12484

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

12485

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

12512

\[ {}4 y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

12513

\[ {}y x +2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

[_separable]

12519

\[ {}x +y-y^{\prime } x = 0 \]

[_linear]

12536

\[ {}y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]

[_linear]

12537

\[ {}x^{4} y^{\prime }+2 x^{3} y = 1 \]

[_linear]

12538

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

12539

\[ {}y^{\prime }+4 y x = 8 x \]

[_separable]

12540

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

12541

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 u v = 3 u \]

[_separable]

12542

\[ {}y^{\prime } x +\frac {\left (2 x +1\right ) y}{x +1} = x -1 \]

[_linear]

12543

\[ {}\left (x^{2}+x -2\right ) y^{\prime }+3 \left (x +1\right ) y = x -1 \]

[_linear]

12544

\[ {}y^{\prime } x +y x +y-1 = 0 \]

[_linear]

12546

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right ) \]

[_linear]

12547

\[ {}\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4} = 0 \]

[_linear]

12548

\[ {}\cos \left (x \right )^{2}-y \cos \left (x \right )-\left (1+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_linear]

12549

\[ {}y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

[_linear]

12554

\[ {}y^{\prime } x -2 y = 2 x^{4} \]
i.c.

[_linear]

12555

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

12556

\[ {}{\mathrm e}^{x} \left (y-3 \left (1+{\mathrm e}^{x}\right )^{2}\right )+\left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_linear]

12557

\[ {}2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12558

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right )^{2} \]
i.c.

[_linear]

12559

\[ {}x^{\prime }-x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

12562

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 0 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

12563

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 5 & 0\le x <10 \\ 1 & 10\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

12564

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} {\mathrm e}^{-x} & 0\le x <2 \\ {\mathrm e}^{-2} & 2\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

12565

\[ {}\left (x +2\right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x <2 \\ 4 & 2\le x \end {array}\right . \]
i.c.

[_linear]

12566

\[ {}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x} \]

[[_linear, ‘class A‘]]

12567

\[ {}y^{\prime }+y = 2 \sin \left (x \right )+5 \sin \left (2 x \right ) \]

[[_linear, ‘class A‘]]

12573

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

12575

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

12576

\[ {}x^{2}-2 y+y^{\prime } x = 0 \]

[_linear]

12578

\[ {}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]

[_separable]

12579

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

12582

\[ {}\left (x +1\right ) y^{\prime }+y x = {\mathrm e}^{-x} \]

[_linear]

12585

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

12593

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

12594

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x <2 \\ 0 & 0<x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

12595

\[ {}\left (x +2\right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x \le 2 \\ 4 & 2<x \end {array}\right . \]
i.c.

[_linear]

12875

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

12881

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

12883

\[ {}x^{\prime } = x t^{2} \]

[_separable]

12887

\[ {}y^{\prime } x = k y \]

[_separable]

12888

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

12893

\[ {}y^{\prime }+\frac {y}{x} = x^{2} \]

[_linear]

12894

\[ {}x^{\prime }+x t = 4 t \]
i.c.

[_separable]

12895

\[ {}z^{\prime } = z \tan \left (y \right )+\sin \left (y \right ) \]

[_linear]

12896

\[ {}y^{\prime }+{\mathrm e}^{-x} y = 1 \]
i.c.

[_linear]

12897

\[ {}x^{\prime }+x \tanh \left (t \right ) = 3 \]

[_linear]

12898

\[ {}y^{\prime }+2 y \cot \left (x \right ) = 5 \]
i.c.

[_linear]

12899

\[ {}x^{\prime }+5 x = t \]

[[_linear, ‘class A‘]]

12900

\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \]
i.c.

[_linear]

12901

\[ {}T^{\prime } = -k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \]

[[_linear, ‘class A‘]]

12903

\[ {}1+y \,{\mathrm e}^{x}+x \,{\mathrm e}^{x} y+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

[_linear]

13013

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

13015

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

13016

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 1 \]

[_linear]

13018

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

[[_linear, ‘class A‘]]

13020

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

13040

\[ {}x^{\prime }+5 x = 10 t +2 \]
i.c.

[[_linear, ‘class A‘]]

13045

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

[_linear]

13054

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right ) = 0 \]

[_linear]

13061

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

13126

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

[_linear]

13130

\[ {}5 y^{\prime }-y x = 0 \]

[_separable]

13316

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

13324

\[ {}y-y^{\prime } x = 0 \]

[_separable]

13326

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

13328

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

13329

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

13332

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

13338

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

13343

\[ {}t -s+t s^{\prime } = 0 \]

[_linear]

13348

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

[_linear]

13353

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

13354

\[ {}y^{\prime }-\frac {a y}{x} = \frac {x +1}{x} \]

[_linear]

13355

\[ {}\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0 \]

[_linear]

13356

\[ {}s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1 \]

[_linear]

13357

\[ {}s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2} \]

[_linear]

13358

\[ {}y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n} \]

[_linear]

13359

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

13360

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

13361

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1 = 0 \]

[_linear]

13383

\[ {}y = y^{\prime } x +y^{\prime } \]

[_separable]

13386

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

[_linear]

13441

\[ {}\left (x^{2}+1\right ) y^{\prime }-y x -\alpha = 0 \]

[_linear]

13451

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x} \]
i.c.

[_linear]

13473

\[ {}-y+y^{\prime } x = 0 \]

[_separable]

13478

\[ {}y^{\prime }-\frac {y}{x} = 1 \]

[_linear]

13480

\[ {}x^{2} y^{\prime }+2 y x = 0 \]

[_separable]

13488

\[ {}2 y^{\prime } x -y = 0 \]

[_separable]

13495

\[ {}y^{\prime }-2 y x = 0 \]

[_separable]

13496

\[ {}y^{\prime }+y = x^{2}+2 x -1 \]

[[_linear, ‘class A‘]]

13501

\[ {}x y^{\prime } \ln \left (x \right )-\left (1+\ln \left (x \right )\right ) y = 0 \]

[_separable]

13519

\[ {}y^{\prime } = y x \]

[_separable]

13520

\[ {}y^{\prime } = -y x \]

[_separable]

13523

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

13524

\[ {}y^{\prime } = y x \]

[_separable]

13526

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

13535

\[ {}y^{\prime } = \frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \]

[_linear]

13551

\[ {}y^{\prime } = y x +\frac {1}{x^{2}+1} \]
i.c.

[_linear]

13552

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \]
i.c.

[_linear]

13553

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (x \right ) \]
i.c.

[_linear]

13554

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

13555

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

13556

\[ {}y^{\prime } = y \cot \left (x \right )+\csc \left (x \right ) \]
i.c.

[_linear]

13573

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13576

\[ {}y^{\prime } = y x +x \]
i.c.

[_separable]

13578

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

13581

\[ {}y^{\prime } = \frac {1-y x}{x^{2}} \]

[_linear]

13585

\[ {}y^{\prime } = y x +2 \]
i.c.

[_linear]

13586

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13587

\[ {}y^{\prime } = \frac {y}{x -1}+x^{2} \]
i.c.

[_linear]

13588

\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]
i.c.

[_linear]

13589

\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]
i.c.

[_linear]

13590

\[ {}y^{\prime } = y \cot \left (x \right )+\sin \left (x \right ) \]
i.c.

[_linear]

13592

\[ {}y-y^{\prime } x = 0 \]

[_separable]

13593

\[ {}x^{2}-y+y^{\prime } x = 0 \]

[_linear]

13596

\[ {}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

13598

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

13599

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13600

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13601

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

13602

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

[_linear]

13603

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

13763

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

13765

\[ {}y^{\prime } = t^{4} y \]

[_separable]

13775

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

13778

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

13782

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

13784

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

13785

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

13803

\[ {}y^{\prime } = y+t +1 \]

[[_linear, ‘class A‘]]

13805

\[ {}y^{\prime } = 2 y-t \]
i.c.

[[_linear, ‘class A‘]]

13807

\[ {}y^{\prime } = \left (1+t \right ) y \]
i.c.

[_separable]

13818

\[ {}y^{\prime } = t^{2}+t^{2} y \]

[_separable]

13819

\[ {}y^{\prime } = t +t y \]

[_separable]

13826

\[ {}v^{\prime } = 2 V \left (t \right )-2 v \]

[[_linear, ‘class A‘]]

13888

\[ {}y^{\prime } = -4 y+9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13889

\[ {}y^{\prime } = -4 y+3 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13890

\[ {}y^{\prime } = -3 y+4 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

13891

\[ {}y^{\prime } = 2 y+\sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

13892

\[ {}y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t} \]

[[_linear, ‘class A‘]]

13893

\[ {}y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \]

[[_linear, ‘class A‘]]

13894

\[ {}2 y+y^{\prime } = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

13895

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

13896

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13897

\[ {}y^{\prime }+3 y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13898

\[ {}y^{\prime }-2 y = 7 \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

13899

\[ {}2 y+y^{\prime } = 3 t^{2}+2 t -1 \]

[[_linear, ‘class A‘]]

13900

\[ {}2 y+y^{\prime } = t^{2}+2 t +1+{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

13901

\[ {}y^{\prime }+y = t^{3}+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

13902

\[ {}y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

13903

\[ {}y^{\prime }+y = \cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13904

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

[_linear]

13905

\[ {}y^{\prime } = \frac {3 y}{t}+t^{5} \]

[_linear]

13906

\[ {}y^{\prime } = -\frac {y}{1+t}+t^{2} \]

[_linear]

13907

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

13908

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \]

[_linear]

13909

\[ {}y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t} \]

[_linear]

13910

\[ {}y^{\prime } = -\frac {y}{1+t}+2 \]
i.c.

[_linear]

13911

\[ {}y^{\prime } = \frac {y}{1+t}+4 t^{2}+4 t \]
i.c.

[_linear]

13912

\[ {}y^{\prime } = -\frac {y}{t}+2 \]
i.c.

[_linear]

13913

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]
i.c.

[_linear]

13914

\[ {}y^{\prime }-\frac {2 y}{t} = 2 t^{2} \]
i.c.

[_linear]

13915

\[ {}y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t} \]
i.c.

[_linear]

13916

\[ {}y^{\prime } = \sin \left (t \right ) y+4 \]

[_linear]

13917

\[ {}y^{\prime } = t^{2} y+4 \]

[_linear]

13918

\[ {}y^{\prime } = \frac {y}{t^{2}}+4 \cos \left (t \right ) \]

[_linear]

13919

\[ {}y^{\prime } = y+4 \cos \left (t^{2}\right ) \]

[[_linear, ‘class A‘]]

13920

\[ {}y^{\prime } = -y \,{\mathrm e}^{-t^{2}}+\cos \left (t \right ) \]

[_linear]

13921

\[ {}y^{\prime } = \frac {y}{\sqrt {t^{3}-3}}+t \]

[_linear]

13922

\[ {}y^{\prime } = a t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

13923

\[ {}y^{\prime } = t^{r} y+4 \]

[_linear]

13924

\[ {}v^{\prime }+\frac {2 v}{5} = 3 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

13925

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

13926

\[ {}2 y+y^{\prime } = 3 \,{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

13933

\[ {}y^{\prime } = y+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13935

\[ {}y^{\prime } = t y \]

[_separable]

13936

\[ {}y^{\prime } = 3 y+{\mathrm e}^{7 t} \]

[[_linear, ‘class A‘]]

13937

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

13938

\[ {}y^{\prime } = -5 y+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

13939

\[ {}y^{\prime } = t +\frac {2 y}{1+t} \]

[_linear]

13942

\[ {}y^{\prime } = -3 y+{\mathrm e}^{-2 t}+t^{2} \]

[[_linear, ‘class A‘]]

13943

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

13944

\[ {}y^{\prime } = 2 y+\cos \left (4 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13945

\[ {}y^{\prime } = 3 y+2 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

13947

\[ {}y^{\prime }+5 y = 3 \,{\mathrm e}^{-5 t} \]
i.c.

[[_linear, ‘class A‘]]

13948

\[ {}y^{\prime } = 2 t y+3 t \,{\mathrm e}^{t^{2}} \]
i.c.

[_linear]

13956

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

13957

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14143

\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

14186

\[ {}y^{\prime }+3 y x = 6 x \]

[_separable]

14192

\[ {}\left (x -2\right ) y^{\prime } = 3+y \]

[_separable]

14198

\[ {}y^{\prime } = 3 x -y \sin \left (x \right ) \]

[_linear]

14202

\[ {}y^{\prime }+y x = 4 x \]

[_separable]

14203

\[ {}y^{\prime }+4 y = x^{2} \]

[[_linear, ‘class A‘]]

14204

\[ {}y^{\prime } = y x -3 x -2 y+6 \]

[_separable]

14214

\[ {}y^{\prime } = 2 x -1+2 y x -y \]
i.c.

[_separable]

14217

\[ {}y^{\prime } = y x -4 x \]

[_separable]

14223

\[ {}y^{\prime } = y x -4 x \]

[_separable]

14224

\[ {}y^{\prime } = y x -3 x -2 y+6 \]

[_separable]

14227

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14240

\[ {}y^{\prime } = 2 x -1+2 y x -y \]
i.c.

[_separable]

14245

\[ {}x^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

14249

\[ {}y^{\prime } = 1+y x +3 y \]

[_linear]

14252

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

14254

\[ {}y^{\prime } x +\cos \left (x^{2}\right ) = 827 y \]

[_linear]

14256

\[ {}2 y+y^{\prime } = 20 \,{\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

14257

\[ {}y^{\prime } = 4 y+16 x \]

[[_linear, ‘class A‘]]

14258

\[ {}y^{\prime }-2 y x = x \]

[_separable]

14259

\[ {}y^{\prime } x +3 y-10 x^{2} = 0 \]

[_linear]

14260

\[ {}x^{2} y^{\prime }+2 y x = \sin \left (x \right ) \]

[_linear]

14261

\[ {}y^{\prime } x = \sqrt {x}+3 y \]

[_linear]

14262

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = \cos \left (x \right )^{2} \]

[_linear]

14263

\[ {}y^{\prime } x +\left (5 x +2\right ) y = \frac {20}{x} \]

[_linear]

14264

\[ {}2 \sqrt {x}\, y^{\prime }+y = 2 x \,{\mathrm e}^{-\sqrt {x}} \]

[_linear]

14267

\[ {}y^{\prime }+5 y = {\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

14268

\[ {}3 y+y^{\prime } x = 20 x^{2} \]
i.c.

[_linear]

14269

\[ {}y^{\prime } x = y+x^{2} \cos \left (x \right ) \]
i.c.

[_linear]

14270

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3+3 x^{2}-y\right ) \]
i.c.

[_linear]

14271

\[ {}y^{\prime }+6 y x = \sin \left (x \right ) \]
i.c.

[_linear]

14272

\[ {}x^{2} y^{\prime }+y x = \sqrt {x}\, \sin \left (x \right ) \]
i.c.

[_linear]

14273

\[ {}-y+y^{\prime } x = x^{2} {\mathrm e}^{-x^{2}} \]
i.c.

[_linear]

14317

\[ {}2 x \left (1+y\right )-y^{\prime } = 0 \]

[_separable]

14321

\[ {}y^{\prime } x = 2 y-6 x^{3} \]

[_linear]

14328

\[ {}4 y x -6+x^{2} y^{\prime } = 0 \]

[_linear]

14331

\[ {}3 y-x^{3}+y^{\prime } x = 0 \]

[_linear]

14334

\[ {}2+2 x^{2}-2 y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_linear]

14350

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

14355

\[ {}2 y-6 x +\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

14361

\[ {}2 y+y^{\prime } = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

14368

\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \]

[_linear]

14370

\[ {}x^{2} y^{\prime }+3 y x = 6 \,{\mathrm e}^{-x^{2}} \]

[_linear]

14428

\[ {}3 y+y^{\prime } x = {\mathrm e}^{2 x} \]

[_linear]

14953

\[ {}y^{\prime }+y x = 0 \]

[_separable]

14954

\[ {}y^{\prime }+y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

14966

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

14983

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

14996

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

15004

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

15005

\[ {}y^{\prime }-y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

15018

\[ {}2 y+y^{\prime } = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

15025

\[ {}y^{\prime } = y+\frac {1}{1-t} \]

[_linear]

15029

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

15031

\[ {}t y^{\prime } = y \]

[_separable]

15032

\[ {}y^{\prime } = \tan \left (t \right ) y \]
i.c.

[_separable]

15042

\[ {}t y^{\prime }+y = t^{3} \]
i.c.

[_linear]

15043

\[ {}t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]
i.c.

[_linear]

15044

\[ {}2 y^{\prime }+t y = \ln \left (t \right ) \]
i.c.

[_linear]

15045

\[ {}y^{\prime }+y \sec \left (t \right ) = t \]
i.c.

[_linear]

15046

\[ {}y^{\prime }+\frac {y}{t -3} = \frac {1}{t -1} \]
i.c.

[_linear]

15047

\[ {}\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]
i.c.

[_linear]

15048

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

15049

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

15050

\[ {}t y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[_linear]

15051

\[ {}\tan \left (t \right ) y+y^{\prime } = \sin \left (t \right ) \]
i.c.

[_linear]

15063

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

15064

\[ {}y^{\prime } = \frac {y+2}{2 t +1} \]

[_separable]

15108

\[ {}y^{\prime } = \frac {3+y}{3 x +1} \]
i.c.

[_separable]

15111

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]
i.c.

[_separable]

15112

\[ {}y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

15115

\[ {}y^{\prime }+y f \left (t \right ) = 0 \]
i.c.

[_separable]

15116

\[ {}y^{\prime } = -\frac {y-2}{x -2} \]
i.c.

[_separable]

15126

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

15128

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15129

\[ {}y^{\prime }-y = 2 \cos \left (t \right ) \]

[[_linear, ‘class A‘]]

15130

\[ {}y^{\prime }-y = t^{2}-2 t \]

[[_linear, ‘class A‘]]

15131

\[ {}y^{\prime }-y = 4 t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15132

\[ {}t y^{\prime }+y = t^{2} \]

[_linear]

15133

\[ {}t y^{\prime }+y = t \]

[_linear]

15134

\[ {}y^{\prime } x +y = x \,{\mathrm e}^{x} \]

[_linear]

15135

\[ {}y^{\prime } x +y = {\mathrm e}^{-x} \]

[_linear]

15136

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

[_linear]

15137

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

[_linear]

15138

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

[_linear]

15139

\[ {}y^{\prime }+y \cot \left (t \right ) = \cos \left (t \right ) \]

[_linear]

15140

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

[_linear]

15141

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

[_linear]

15142

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

[_linear]

15143

\[ {}y^{\prime }+2 y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

15144

\[ {}y^{\prime }+y x = x^{3} \]

[_linear]

15145

\[ {}y^{\prime }-y x = x \]

[_separable]

15147

\[ {}y^{\prime }-x = y \]

[[_linear, ‘class A‘]]

15149

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

15150

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]

[_linear]

15151

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]

[[_linear, ‘class A‘]]

15152

\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

15153

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

15154

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]
i.c.

[_linear]

15155

\[ {}y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15156

\[ {}t y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[_linear]

15157

\[ {}t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \]
i.c.

[_linear]

15158

\[ {}\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \]
i.c.

[_linear]

15159

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15160

\[ {}x^{\prime } = x+t +1 \]
i.c.

[[_linear, ‘class A‘]]

15161

\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \]
i.c.

[[_linear, ‘class A‘]]

15162

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

[_linear]

15164

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

15165

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

15166

\[ {}y^{\prime }-y = \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

15167

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

15168

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15169

\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

15170

\[ {}y^{\prime }-5 y = t \]

[[_linear, ‘class A‘]]

15171

\[ {}y^{\prime }+3 y = 27 t^{2}+9 \]

[[_linear, ‘class A‘]]

15172

\[ {}y^{\prime }-\frac {y}{2} = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15173

\[ {}y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

[[_linear, ‘class A‘]]

15174

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15175

\[ {}y^{\prime }-3 y = 27 t^{2} \]

[[_linear, ‘class A‘]]

15176

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15177

\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15178

\[ {}y^{\prime }+y = 2 \cos \left (t \right )+t \]

[[_linear, ‘class A‘]]

15179

\[ {}y^{\prime }+\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15180

\[ {}y^{\prime }-\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15181

\[ {}t y^{\prime }+y = t \cos \left (t \right ) \]

[_linear]

15182

\[ {}y^{\prime }+y = t \]
i.c.

[[_linear, ‘class A‘]]

15183

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15184

\[ {}y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15185

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

15188

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

15189

\[ {}y \sec \left (t \right )^{2}+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

[_linear]

15194

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

15197

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

15198

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

15207

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15215

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

15216

\[ {}1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]
i.c.

[_linear]

15217

\[ {}2 t y+3 t^{2}+\left (t^{2}-1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

15227

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

15228

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15257

\[ {}2 y-3 t +t y^{\prime } = 0 \]

[_linear]

15262

\[ {}t -y+t y^{\prime } = 0 \]

[_linear]

15275

\[ {}t +y-t y^{\prime } = 0 \]
i.c.

[_linear]

15285

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

15294

\[ {}y = t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \]

[_linear]

15306

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

15307

\[ {}y^{\prime }+3 y = -10 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

15310

\[ {}y-x +y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

15319

\[ {}y^{\prime }+t y = t \]

[_separable]

15320

\[ {}x^{\prime }+\frac {x}{y} = y^{2} \]

[_linear]

15321

\[ {}t r^{\prime }+r = t \cos \left (t \right ) \]

[_linear]

15338

\[ {}y^{\prime } = -\frac {y}{t -2} \]
i.c.

[_separable]

15462

\[ {}y^{\prime }-4 y = t^{2} \]

[[_linear, ‘class A‘]]

15463

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15464

\[ {}y^{\prime }-y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

15465

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

15466

\[ {}y^{\prime }+4 y = t \,{\mathrm e}^{-4 t} \]

[[_linear, ‘class A‘]]

15837

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

15838

\[ {}2 y+y^{\prime } = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

15839

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = 2 x \]

[_separable]

15841

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

15842

\[ {}y^{\prime } = -x +y \]

[[_linear, ‘class A‘]]

15843

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

[[_linear, ‘class A‘]]

15845

\[ {}y^{\prime } = x \left (-1+y\right ) \]

[_separable]

15848

\[ {}y^{\prime } = y-x^{2} \]

[[_linear, ‘class A‘]]

15849

\[ {}y^{\prime } = x^{2}+2 x -y \]

[[_linear, ‘class A‘]]

15850

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

15853

\[ {}y^{\prime } = 2 x -y \]

[[_linear, ‘class A‘]]

15854

\[ {}y^{\prime } = y+x^{2} \]

[[_linear, ‘class A‘]]

15855

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

15862

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

15863

\[ {}y^{\prime } = 2 y-2 x^{2}-3 \]
i.c.

[[_linear, ‘class A‘]]

15864

\[ {}y^{\prime } x = 2 x -y \]
i.c.

[_linear]

15867

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

15879

\[ {}y^{\prime } = a x +b y+c \]

[[_linear, ‘class A‘]]

15881

\[ {}y^{\prime } x +y = a \left (1+y x \right ) \]
i.c.

[_linear]

15883

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

15896

\[ {}\left (x +1\right ) y^{\prime } = -1+y \]

[_separable]

15897

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

15900

\[ {}x -y+y^{\prime } x = 0 \]

[_linear]

15907

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

[_linear]

15919

\[ {}2 y+y^{\prime } = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

15920

\[ {}x^{2}-y^{\prime } x = y \]
i.c.

[_linear]

15921

\[ {}y^{\prime }-2 y x = 2 x \,{\mathrm e}^{x^{2}} \]

[_linear]

15922

\[ {}y^{\prime }+2 y x = {\mathrm e}^{-x^{2}} \]

[_linear]

15923

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = 2 x \]
i.c.

[_linear]

15924

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

15925

\[ {}y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}} \]
i.c.

[_linear]

15926

\[ {}x y^{\prime } \ln \left (x \right )-y = 3 x^{3} \ln \left (x \right )^{2} \]

[_linear]

15928

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_separable]

15931

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

[_linear]

15932

\[ {}y^{\prime }+x y \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}} \]

[_linear]

15933

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (\cos \left (x \right )-1\right ) \ln \left (2\right ) \]

[[_linear, ‘class A‘]]

15934

\[ {}y^{\prime }-y = -2 \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

15935

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = -\frac {\sin \left (x \right )^{2}}{x^{2}} \]
i.c.

[_linear]

15936

\[ {}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1 \]
i.c.

[_linear]

15937

\[ {}2 y^{\prime } x -y = 1-\frac {2}{\sqrt {x}} \]
i.c.

[_linear]

15938

\[ {}x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]
i.c.

[_linear]

15939

\[ {}y^{\prime } x +y = 2 x \]

[_linear]

15940

\[ {}y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 1 \]

[_linear]

15941

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = -\sin \left (2 x \right ) \]
i.c.

[_linear]

15945

\[ {}y^{\prime }+3 y x = y \,{\mathrm e}^{x^{2}} \]

[_separable]

15963

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 y x -\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

15970

\[ {}x^{2}+y-y^{\prime } x = 0 \]

[_linear]

15972

\[ {}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0 \]

[_linear]

15980

\[ {}{y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left ({\mathrm e}^{2 x}-1\right ) \]

[_separable]

15982

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

15983

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+y x = 0 \]

[_quadrature]

16030

\[ {}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x \]

[_linear]

16036

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_linear]

16041

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

[_linear]

16044

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]