2.16.125 Problems 12401 to 12500

Table 2.266: Main lookup table. Sorted sequentially by problem number.

#

ODE

Program classification

CAS classification

Solved?

Verified?

time (sec)

12401

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0 \]

second order series method. Regular singular point. Repeated root

[_Jacobi]

1.351

12402

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _with_linear_symmetries]]

1.297

12403

\[ {}x y^{\prime \prime }+4 y^{\prime }-x y = 0 \]

second order series method. Regular singular point. Difference is integer

[[_2nd_order, _with_linear_symmetries]]

1.228

12404

\[ {}2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }-k y = 0 \]

second order series method. Regular singular point. Difference not integer

[[_2nd_order, _with_linear_symmetries]]

1.607

12405

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

second order series method. Irregular singular point

[[_Emden, _Fowler]]

N/A

0.255

12406

\[ {}x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

second order series method. Irregular singular point

[[_2nd_order, _exact, _linear, _homogeneous]]

N/A

0.3

12407

\[ {}2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

second order series method. Regular singular point. Difference not integer

[[_2nd_order, _with_linear_symmetries]]

1.453

12408

\[ {}x \left (-1+x \right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

second order series method. Regular singular point. Difference is integer

[[_2nd_order, _exact, _linear, _homogeneous]]

2.608

12409

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

second_order_bessel_ode

[[_Emden, _Fowler]]

1.159

12410

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

second_order_bessel_ode

[[_Emden, _Fowler]]

0.387

12411

\[ {}x y^{\prime \prime }+\left (1+x \right )^{2} y = 0 \]

second_order_bessel_ode

[[_2nd_order, _with_linear_symmetries]]

0.626

12412

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]

kovacic, second_order_linear_constant_coeff, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x]]

0.866

12413

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]

kovacic, second_order_linear_constant_coeff, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x]]

0.759

12414

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _missing_x]]

0.368

12415

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

unknown

[_Gegenbauer]

N/A

0.945

12416

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

second_order_bessel_ode

[[_2nd_order, _linear, _nonhomogeneous]]

12.46

12417

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.242

12418

\[ {}{y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \]

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.322

12419

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

dAlembert

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.759

12420

\[ {}x y \left (1-{y^{\prime }}^{2}\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime } \]

first_order_ode_lie_symmetry_calculated

[_rational]

71.363

12421

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

higher_order_missing_y

[[_3rd_order, _missing_y]]

0.71

12422

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

kovacic, second_order_linear_constant_coeff, linear_second_order_ode_solved_by_an_integrating_factor

[[_2nd_order, _with_linear_symmetries]]

0.5

12423

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

kovacic, second_order_change_of_variable_on_x_method_1, second_order_change_of_variable_on_x_method_2

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.716

12424

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

1.6

12425

\[ {}y-x y^{\prime } = 0 \]

exact, linear, separable, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[_separable]

1.044

12426

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

0.807

12427

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

exact, linear, separable, differentialType, homogeneousTypeMapleC, first_order_ode_lie_symmetry_lookup

[_separable]

1.373

12428

\[ {}\left (t^{2}+x t^{2}\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

1.522

12429

\[ {}y-a +x^{2} y^{\prime } = 0 \]

exact, linear, separable, first_order_ode_lie_symmetry_lookup

[_separable]

1.454

12430

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

exact, linear, separable, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[_separable]

2.063

12431

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

exact, riccati, separable, first_order_ode_lie_symmetry_lookup

[_separable]

1.121

12432

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

exact, riccati, separable, first_order_ode_lie_symmetry_lookup

[_separable]

1.293

12433

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

exact, linear, separable, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[_separable]

1.293

12434

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

0.972

12435

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0 \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

0.769

12436

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (-{\mathrm e}^{x}+1\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

3.153

12437

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

exact, bernoulli, separable, first_order_ode_lie_symmetry_lookup

[_separable]

2.376

12438

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

exact, differentialType, homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.889

12439

\[ {}x +y+x y^{\prime } = 0 \]

exact, linear, differentialType, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[_linear]

1.254

12440

\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \]

exactByInspection, homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.426

12441

\[ {}-y+x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.636

12442

\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]

homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.751

12443

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _dAlembert]

1.618

12444

\[ {}t -s+t s^{\prime } = 0 \]

linear, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.084

12445

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

bernoulli, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.569

12446

\[ {}x \cos \left (\frac {y}{x}\right ) \left (y+x y^{\prime }\right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) \]

homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _dAlembert]

2.424

12447

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

homogeneousTypeMapleC, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.181

12448

\[ {}x +2 y+1-\left (4 y+2 x +3\right ) y^{\prime } = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.838

12449

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

linear, homogeneousTypeMapleC, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.298

12450

\[ {}\frac {y-x y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \]

exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _dAlembert]

25.151

12451

\[ {}\frac {x +y y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \]

exact, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

3.546

12452

\[ {}y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.977

12453

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.635

12454

\[ {}y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{3} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.171

12455

\[ {}y^{\prime }-\frac {a y}{x} = \frac {1+x}{x} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.43

12456

\[ {}\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0 \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.608

12457

\[ {}s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1 \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.543

12458

\[ {}s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.783

12459

\[ {}y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.383

12460

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

0.881

12461

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_linear, ‘class A‘]]

0.592

12462

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1 = 0 \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.192

12463

\[ {}y^{\prime }+x y = x^{3} y^{3} \]

bernoulli, first_order_ode_lie_symmetry_lookup

[_Bernoulli]

0.788

12464

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \]

exact, riccati, bernoulli, separable, first_order_ode_lie_symmetry_lookup

[_separable]

3.735

12465

\[ {}3 y^{2} y^{\prime }-a y^{3}-x -1 = 0 \]

bernoulli, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_rational, _Bernoulli]

1.909

12466

\[ {}y^{\prime } \left (x^{2} y^{3}+x y\right ) = 1 \]

unknown

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

N/A

1.272

12467

\[ {}x y^{\prime } = \left (y \ln \left (x \right )-2\right ) y \]

riccati, bernoulli, first_order_ode_lie_symmetry_lookup

[_Bernoulli]

1.277

12468

\[ {}y-y^{\prime } \cos \left (x \right ) = y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \]

riccati, bernoulli, first_order_ode_lie_symmetry_lookup

[_Bernoulli]

4.242

12469

\[ {}x^{2}+y+\left (x -2 y\right ) y^{\prime } = 0 \]

exact, differentialType

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.257

12470

\[ {}y-3 x^{2}-\left (4 y-x \right ) y^{\prime } = 0 \]

exact, differentialType

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.303

12471

\[ {}\left (y^{3}-x \right ) y^{\prime } = y \]

exact, differentialType, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _exact, _rational]

2.472

12472

\[ {}\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime } = 0 \]

exact

[_exact, _rational]

2.048

12473

\[ {}6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime } = 0 \]

exact

[_exact, _rational]

1.201

12474

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (y+2 x \right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

exact, homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.196

12475

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

exact, bernoulli, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1.155

12476

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

exact, riccati, separable, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[_separable]

0.786

12477

\[ {}x +y y^{\prime } = \frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} \]

exact, first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_linear_symmetries], _exact, _rational]

1.104

12478

\[ {}y = 2 x y^{\prime }+{y^{\prime }}^{2} \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.43

12479

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

dAlembert

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.406

12480

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.448

12481

\[ {}y = y {y^{\prime }}^{2}+2 x y^{\prime } \]

dAlembert

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.701

12482

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

quadrature

[_quadrature]

0.45

12483

\[ {}y = x y^{\prime }+\sqrt {1-{y^{\prime }}^{2}} \]

clairaut

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.396

12484

\[ {}y = x y^{\prime }+y^{\prime } \]

exact, linear, separable, homogeneousTypeD2, homogeneousTypeMapleC, first_order_ode_lie_symmetry_lookup

[_separable]

0.766

12485

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

clairaut

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.372

12486

\[ {}y = x y^{\prime }-\frac {1}{{y^{\prime }}^{2}} \]

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.758

12487

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

linear, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

0.802

12488

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

higher_order_linear_constant_coefficients_ODE

[[_3rd_order, _missing_x]]

0.243

12489

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

second_order_integrable_as_is, second_order_ode_missing_x, second_order_ode_missing_y, exact nonlinear second order ode

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

1.533

12490

\[ {}x y^{\prime \prime \prime } = 2 \]

higher_order_missing_y

[[_3rd_order, _quadrature]]

0.278

12491

\[ {}y^{\prime \prime } = a^{2} y \]

kovacic, second_order_linear_constant_coeff, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x]]

0.788

12492

\[ {}y^{\prime \prime } = \frac {a}{y^{3}} \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.326

12493

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]

i.c.

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

1.897

12494

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+{y^{\prime }}^{3} = 0 \]

i.c.

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.005

12495

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]

i.c.

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

1.233

12496

\[ {}{y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]

i.c.

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x]]

4.263

12497

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

second_order_integrable_as_is, second_order_ode_missing_x, second_order_ode_missing_y, exact nonlinear second order ode

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

1.049

12498

\[ {}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2} \]

unknown

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

N/A

0.0

12499

\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0 \]

unknown

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

N/A

0.0

12500

\[ {}y^{\prime \prime } = 9 y \]

kovacic, second_order_linear_constant_coeff, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x]]

0.745