2.2.170 Problems 16901 to 17000

Table 2.341: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16901

\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.197

16902

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.929

16903

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

1.847

16904

\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

[[_homogeneous, ‘class G‘]]

2.491

16905

\[ {}y^{\prime }+{y^{\prime }}^{2} x -y = 0 \]

[_rational, _dAlembert]

0.934

16906

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.826

16907

\[ {}x y^{\prime \prime \prime } = 2 \]

[[_3rd_order, _quadrature]]

0.163

16908

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.288

16909

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

0.867

16910

\[ {}{y^{\prime }}^{4} = 1 \]

[_quadrature]

1.527

16911

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.148

16912

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

[[_2nd_order, _missing_x]]

1.175

16913

\[ {}y^{\prime \prime } = \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

4.224

16914

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.234

16915

\[ {}y^{\prime \prime \prime \prime } = x \]

[[_high_order, _quadrature]]

0.105

16916

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

[[_3rd_order, _quadrature]]

0.140

16917

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]
i.c.

[[_2nd_order, _quadrature]]

0.947

16918

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

1.914

16919

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

2.033

16920

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

0.954

16921

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.834

16922

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

[[_2nd_order, _missing_y]]

0.915

16923

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

[[_2nd_order, _missing_y]]

1.106

16924

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

0.727

16925

\[ {}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

[_separable]

2.710

16926

\[ {}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]

0.605

16927

\[ {}y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1.835

16928

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

0.155

16929

\[ {}y^{\prime \prime } = \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

2.263

16930

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.286

16931

\[ {}y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

1.971

16932

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.493

16933

\[ {}y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

[[_2nd_order, _missing_x]]

79.854

16934

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]
i.c.

[[_2nd_order, _missing_x]]

0.575

16935

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.210

16936

\[ {}y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.667

16937

\[ {}3 y^{\prime \prime } = \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

5.545

16938

\[ {}y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.256

16939

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.243

16940

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.848

16941

\[ {}3 y^{\prime } y^{\prime \prime } = 2 y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.737

16942

\[ {}2 y^{\prime \prime } = 3 y^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.779

16943

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.451

16944

\[ {}y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.266

16945

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.836

16946

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.074

16947

\[ {}y^{3} y^{\prime \prime } = -1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.864

16948

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.401

16949

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

24.144

16950

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.819

16951

\[ {}y^{\prime \prime \prime } = 3 y y^{\prime } \]
i.c.

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.059

16952

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.214

16953

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

1.052

16954

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.142

16955

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.149

16956

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.663

16957

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

0.072

16958

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1.247

16959

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.073

16960

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.749

16961

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.074

16962

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

0.120

16963

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.565

16964

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.048

16965

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

[[_high_order, _missing_x]]

0.082

16966

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

[[_high_order, _missing_x]]

0.084

16967

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.069

16968

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.070

16969

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.072

16970

\[ {}y^{\left (5\right )} = 0 \]

[[_high_order, _quadrature]]

0.040

16971

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.069

16972

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.067

16973

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.123

16974

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

[[_2nd_order, _missing_x]]

2.210

16975

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

[[_2nd_order, _missing_y]]

2.299

16976

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

2.069

16977

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

[[_2nd_order, _missing_y]]

2.099

16978

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.412

16979

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.367

16980

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

[[_2nd_order, _missing_y]]

2.260

16981

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

[[_2nd_order, _missing_y]]

2.191

16982

\[ {}y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.814

16983

\[ {}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.967

16984

\[ {}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.872

16985

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

10.611

16986

\[ {}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14.708

16987

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12.655

16988

\[ {}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.786

16989

\[ {}y^{\prime \prime }+k^{2} y = k \]

[[_2nd_order, _missing_x]]

1.955

16990

\[ {}y^{\prime \prime \prime }+y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.108

16991

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

[[_3rd_order, _missing_x]]

0.106

16992

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \]

[[_3rd_order, _missing_x]]

0.097

16993

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

[[_3rd_order, _missing_x]]

0.096

16994

\[ {}y^{\prime \prime \prime \prime }-y = 1 \]

[[_high_order, _missing_x]]

0.102

16995

\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

[[_high_order, _missing_x]]

0.112

16996

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

[[_high_order, _missing_x]]

0.102

16997

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

[[_high_order, _missing_x]]

0.101

16998

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

[[_high_order, _missing_x]]

0.105

16999

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

[[_high_order, _missing_y]]

0.112

17000

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

[[_high_order, _missing_y]]

0.119