2.2.170 Problems 16901 to 17000

Table 2.341: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16901

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.168

16902

\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.449

16903

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.984

16904

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.203

16905

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 t x_{1}^{2} \\ x_{2}^{\prime }=\frac {x_{2}+t}{t} \end {array}\right ] \]

system_of_ODEs

0.055

16906

\[ {}\left [\begin {array}{c} x_{1}^{\prime }={\mathrm e}^{t -x_{1}} \\ x_{2}^{\prime }=2 \,{\mathrm e}^{x_{1}} \end {array}\right ] \]

system_of_ODEs

0.051

16907

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=\frac {y^{2}}{x} \end {array}\right ] \]

system_of_ODEs

0.050

16908

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}^{2}}{x_{2}} \\ x_{2}^{\prime }=x_{2}-x_{1} \end {array}\right ] \]

system_of_ODEs

0.050

16909

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {{\mathrm e}^{-x}}{t} \\ y^{\prime }=\frac {x \,{\mathrm e}^{-y}}{t} \end {array}\right ] \]

system_of_ODEs

0.051

16910

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y+t}{x+y} \\ y^{\prime }=\frac {x-t}{x+y} \end {array}\right ] \]

system_of_ODEs

0.052

16911

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {t -y}{y-x} \\ y^{\prime }=\frac {x-t}{y-x} \end {array}\right ] \]

system_of_ODEs

0.050

16912

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y+t}{x+y} \\ y^{\prime }=\frac {t +x}{x+y} \end {array}\right ] \]

system_of_ODEs

0.051

16913

\[ {}\left [\begin {array}{c} x^{\prime }=-9 y \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.359

16914

\[ {}\left [\begin {array}{c} x^{\prime }=y+t \\ y^{\prime }=x-t \end {array}\right ] \]

system_of_ODEs

0.395

16915

\[ {}\left [\begin {array}{c} x^{\prime }+3 x+4 y=0 \\ y^{\prime }+2 x+5 y=0 \end {array}\right ] \]
i.c.

system_of_ODEs

0.450

16916

\[ {}\left [\begin {array}{c} x^{\prime }=x+5 y \\ y^{\prime }=-x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.526

16917

\[ {}\left [\begin {array}{c} 4 x^{\prime }-y^{\prime }+3 x=\sin \left (t \right ) \\ x^{\prime }+y=\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.602

16918

\[ {}\left [\begin {array}{c} x^{\prime }=z-y \\ y^{\prime }=z \\ z^{\prime }=z-x \end {array}\right ] \]

system_of_ODEs

0.584

16919

\[ {}\left [\begin {array}{c} x^{\prime }=y+z \\ y^{\prime }=x+z \\ z^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.352

16920

\[ {}\left [\begin {array}{c} x^{\prime \prime }=y \\ y^{\prime \prime }=x \end {array}\right ] \]

system_of_ODEs

0.019

16921

\[ {}\left [\begin {array}{c} x^{\prime \prime }+y^{\prime }+x=0 \\ x^{\prime }+y^{\prime \prime }=0 \end {array}\right ] \]

system_of_ODEs

0.023

16922

\[ {}\left [\begin {array}{c} x^{\prime \prime }=3 x+y \\ y^{\prime }=-2 x \end {array}\right ] \]

system_of_ODEs

0.045

16923

\[ {}\left [\begin {array}{c} x^{\prime \prime }=x^{2}+y \\ y^{\prime }=-2 x x^{\prime }+x \end {array}\right ] \]
i.c.

system_of_ODEs

0.000

16924

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2}+y^{2} \\ y^{\prime }=2 x y \end {array}\right ] \]

system_of_ODEs

0.050

16925

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {1}{y} \\ y^{\prime }=\frac {1}{x} \end {array}\right ] \]

system_of_ODEs

0.050

16926

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {x}{y} \\ y^{\prime }=\frac {y}{x} \end {array}\right ] \]

system_of_ODEs

0.051

16927

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y}{x-y} \\ y^{\prime }=\frac {x}{x-y} \end {array}\right ] \]

system_of_ODEs

0.053

16928

\[ {}\left [\begin {array}{c} x^{\prime }=\sin \left (x\right ) \cos \left (y\right ) \\ y^{\prime }=\cos \left (x\right ) \sin \left (y\right ) \end {array}\right ] \]

system_of_ODEs

0.051

16929

\[ {}\left [\begin {array}{c} {\mathrm e}^{t} x^{\prime }=\frac {1}{y} \\ {\mathrm e}^{t} y^{\prime }=\frac {1}{x} \end {array}\right ] \]

system_of_ODEs

0.058

16930

\[ {}\left [\begin {array}{c} x^{\prime }=\cos \left (x\right )^{2} \cos \left (y\right )^{2}+\sin \left (x\right )^{2} \cos \left (y\right )^{2} \\ y^{\prime }=-\frac {\sin \left (2 x\right ) \sin \left (2 y\right )}{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.057

16931

\[ {}\left [\begin {array}{c} x^{\prime }=8 y-x \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.336

16932

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.297

16933

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.622

16934

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=-2 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.505

16935

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-5 y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.434

16936

\[ {}\left [\begin {array}{c} x^{\prime }=y+z-x \\ y^{\prime }=x-y+z \\ z^{\prime }=x+y-z \end {array}\right ] \]

system_of_ODEs

0.372

16937

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y+z \\ y^{\prime }=x+2 y-z \\ z^{\prime }=x-y+2 z \end {array}\right ] \]

system_of_ODEs

0.461

16938

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y+z \\ y^{\prime }=x+z \\ z^{\prime }=y-2 z-3 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.404

16939

\[ {}\left [\begin {array}{c} x^{\prime }+2 x-y=-{\mathrm e}^{2 t} \\ y^{\prime }+3 x-2 y=6 \,{\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.501

16940

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-\cos \left (t \right ) \\ y^{\prime }=-y-2 x+\cos \left (t \right )+\sin \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.865

16941

\[ {}\left [\begin {array}{c} x^{\prime }=y+\tan \left (t \right )^{2}-1 \\ y^{\prime }=\tan \left (t \right )-x \end {array}\right ] \]

system_of_ODEs

0.738

16942

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-2 y+\frac {2}{{\mathrm e}^{t}-1} \\ y^{\prime }=6 x+3 y-\frac {3}{{\mathrm e}^{t}-1} \end {array}\right ] \]

system_of_ODEs

0.058

16943

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+\frac {1}{\cos \left (t \right )} \end {array}\right ] \]

system_of_ODEs

0.641

16944

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+1 \end {array}\right ] \]

system_of_ODEs

0.546

16945

\[ {}\left [\begin {array}{c} x^{\prime }=3-2 y \\ y^{\prime }=2 x-2 t \end {array}\right ] \]

system_of_ODEs

0.576

16946

\[ {}\left [\begin {array}{c} x^{\prime }=-y+\sin \left (t \right ) \\ y^{\prime }=x+\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.574

16947

\[ {}\left [\begin {array}{c} x^{\prime }=x+y+{\mathrm e}^{t} \\ y^{\prime }=x+y-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.358

16948

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-5 y+4 t -1 \\ y^{\prime }=x-2 y+t \end {array}\right ] \]
i.c.

system_of_ODEs

0.576

16949

\[ {}\left [\begin {array}{c} x^{\prime }=y-x+{\mathrm e}^{t} \\ y^{\prime }=x-y+{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.536

16950

\[ {}\left [\begin {array}{c} x^{\prime }+y=t^{2} \\ -x+y^{\prime }=t \end {array}\right ] \]

system_of_ODEs

0.558

16951

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }+y={\mathrm e}^{-t} \\ 2 x^{\prime }+y^{\prime }+2 y=\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.483

16952

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y-2 z+2-t \\ y^{\prime }=-x+1 \\ z^{\prime }=x+y-z+1-t \end {array}\right ] \]

system_of_ODEs

1.111

16953

\[ {}\left [\begin {array}{c} x^{\prime }+x+2 y=2 \,{\mathrm e}^{-t} \\ y^{\prime }+y+z=1 \\ z^{\prime }+z=1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.567

16954

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=x+2 y \end {array}\right ] \]

system_of_ODEs

0.329

16955

\[ {}\left [\begin {array}{c} x^{\prime }=6 x+y \\ y^{\prime }=4 x+3 y \end {array}\right ] \]

system_of_ODEs

0.338

16956

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-4 y+1 \\ y^{\prime }=-x+5 y \end {array}\right ] \]

system_of_ODEs

0.538

16957

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+y+{\mathrm e}^{t} \\ y^{\prime }=x+3 y-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.411

16958

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y+\cos \left (t \right ) \\ y^{\prime }=-x-2 y+\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.467

16959

\[ {}x^{\prime }+3 x = {\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

0.296

16960

\[ {}x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \]
i.c.

[[_linear, ‘class A‘]]

0.294

16961

\[ {}x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.326

16962

\[ {}2 x^{\prime }+6 x = t \,{\mathrm e}^{-3 t} \]
i.c.

[[_linear, ‘class A‘]]

0.304

16963

\[ {}x^{\prime }+x = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.352

16964

\[ {}x^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

0.187

16965

\[ {}x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _quadrature]]

0.201

16966

\[ {}x^{\prime \prime } = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.279

16967

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.197

16968

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.223

16969

\[ {}x^{\prime \prime }-x^{\prime } = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.218

16970

\[ {}x^{\prime \prime }+x = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.200

16971

\[ {}x^{\prime \prime }+6 x^{\prime } = 12 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

0.205

16972

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 2 \]
i.c.

[[_2nd_order, _missing_x]]

0.209

16973

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 4 \]
i.c.

[[_2nd_order, _missing_x]]

0.256

16974

\[ {}2 x^{\prime \prime }-2 x^{\prime } = \left (t +1\right ) {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _missing_y]]

0.257

16975

\[ {}x^{\prime \prime }+x = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.335

16976

\[ {}y^{\prime } = \frac {x^{4}}{y} \]

[_separable]

1.819

16977

\[ {}y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y} \]

[_separable]

1.299

16978

\[ {}y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

[_separable]

2.362

16979

\[ {}y^{\prime } = \frac {7 x^{2}-1}{7+5 y} \]

[_separable]

1.338

16980

\[ {}y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \]

[_separable]

2.489

16981

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

2.132

16982

\[ {}y^{\prime } y = \left (x +x y^{2}\right ) {\mathrm e}^{x^{2}} \]

[_separable]

2.202

16983

\[ {}y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}} \]

[_separable]

1.800

16984

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1.046

16985

\[ {}y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1} \]

[_separable]

1.869

16986

\[ {}y^{\prime } = 4 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

8.820

16987

\[ {}y^{\prime } = x \left (y-y^{2}\right ) \]

[_separable]

2.110

16988

\[ {}y^{\prime } = \left (1-12 x \right ) y^{2} \]
i.c.

[_separable]

1.783

16989

\[ {}y^{\prime } = \frac {3-2 x}{y} \]
i.c.

[_separable]

4.174

16990

\[ {}x +y \,{\mathrm e}^{-x} y^{\prime } = 0 \]
i.c.

[_separable]

3.589

16991

\[ {}r^{\prime } = \frac {r^{2}}{\theta } \]
i.c.

[_separable]

1.714

16992

\[ {}y^{\prime } = \frac {3 x}{y+x^{2} y} \]
i.c.

[_separable]

2.406

16993

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

3.277

16994

\[ {}y^{\prime } = 2 x y^{2}+4 x^{3} y^{2} \]
i.c.

[_separable]

1.841

16995

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]
i.c.

[_separable]

1.906

16996

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right ) \]
i.c.

[_separable]

3.880

16997

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6} \]
i.c.

[_separable]

6.969

16998

\[ {}y^{\prime } = \frac {3 x^{2}-{\mathrm e}^{x}}{2 y-11} \]
i.c.

[_separable]

3.056

16999

\[ {}x^{2} y^{\prime } = y-x y \]
i.c.

[_separable]

2.221

17000

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

3.507