# |
ODE |
CAS classification |
Solved? |
\[
{}y^{\prime } = y-x +1
\] |
[[_linear, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = x -y+1
\] |
[[_linear, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+2 y x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime } = 4 y
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime } = 2 y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \,{\mathrm e}^{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 4 x^{3} y-y
\] |
[_separable] |
✓ |
|
\[
{}\tan \left (x \right ) y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}-y+y^{\prime } x = 2 x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x +2 y = 3 x
\] |
[_linear] |
✓ |
|
\[
{}3 y^{\prime } x +y = 12 x
\] |
[_linear] |
✓ |
|
\[
{}-y+y^{\prime } x = x
\] |
[_linear] |
✓ |
|
\[
{}y+y^{\prime } x = 3 y x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+p \left (x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = x -y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y y^{\prime } = x^{2}+2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime } = x +y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x +2 y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{2} y^{\prime } = x^{3}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime } = y x +x^{2} {\mathrm e}^{\frac {y}{x}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime } = y x +y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y y^{\prime } = x^{2}+3 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x -y+\left (6 y-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0
\] |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
|
\[
{}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y x +y^{2}-x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}3 y+x^{4} y^{\prime } = 2 y x
\] |
[_separable] |
✓ |
|
\[
{}2 y x +x^{2} y^{\prime } = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime } = y x +3 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{3} y^{\prime } = x^{2} y-y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{2} y-x^{3} y^{\prime } = y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 y x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +3 y}{y-3 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = y-x +1
\] |
[[_linear, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = x -y+1
\] |
[[_linear, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+2 y x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime } = 4 y
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime } = 2 y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \,{\mathrm e}^{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 4 x^{3} y-y
\] |
[_separable] |
✓ |
|
\[
{}\tan \left (x \right ) y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}-y+y^{\prime } x = 2 x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x +2 y = 3 x
\] |
[_linear] |
✓ |
|
\[
{}3 y^{\prime } x +y = 12 x
\] |
[_linear] |
✓ |
|
\[
{}-y+y^{\prime } x = x
\] |
[_linear] |
✓ |
|
\[
{}y+y^{\prime } x = 3 y x
\] |
[_separable] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = x -y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y y^{\prime } = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime } = x +y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x +2 y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{2} y^{\prime } = x^{3}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime } = y x +x^{2} {\mathrm e}^{\frac {y}{x}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime } = y x +y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y y^{\prime } = x^{2}+3 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x -y+\left (6 y-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0
\] |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
|
\[
{}y x +y^{2}-x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}3 y+x^{4} y^{\prime } = 2 y x
\] |
[_separable] |
✓ |
|
\[
{}2 y x +x^{2} y^{\prime } = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime } = y x +3 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{3} y^{\prime } = x^{2} y-y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{2} y-x^{3} y^{\prime } = y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 y x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +3 y}{y-3 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}-y+t y^{\prime } = t^{2} {\mathrm e}^{-t}
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 y x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {4 y-3 x}{2 x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 x +3 y}{2 x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +3 y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+3 y x +y^{2}-x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 y x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 y x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y+\left (t -4\right ) t y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 t}{y}
\] |
[_separable] |
✓ |
|
\[
{}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {-a x -b y}{b x +c y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-a x +b y}{b x -c y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 y x +3 x^{2} y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class D‘], _rational] |
✓ |
|
\[
{}3 y x +y^{2}+\left (x^{2}+y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x +y+\left (x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1+{\mathrm e}^{x}\right ) y^{\prime } = y-y \,{\mathrm e}^{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = {\mathrm e}^{\frac {y}{x}} x +y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}3 t +2 y = -t y^{\prime }
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 y x +3 y^{2}-\left (x^{2}+2 y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+a y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+3 x^{2} y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x +y \ln \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x +3 y = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x +\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x +\left (1+x \cot \left (x \right )\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\frac {k y}{x} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\tan \left (k x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+y x = 0
\] |
[_separable] |
✓ |
|
\[
{}x +y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) \left (x -2\right ) y^{\prime }+y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 y x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +3 y}{x -4 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {y}{x}}}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime } = y^{2}+y x -x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x}
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y^{3} y^{\prime } = y^{4}+x^{4}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime } = x^{2}+y x +y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x y y^{\prime } = x^{2}+2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 y x}
\] |
[[_homogeneous, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y x +y^{2}}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}-3 y x -5 x^{2}}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{2} y^{\prime } = 2 x^{2}+y^{2}+4 y x
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x y y^{\prime } = 3 x^{2}+4 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y}{2 x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{y-2 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime } = y^{2}+y x -4 x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x y y^{\prime } = x^{2}-y x +y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y^{2}-y x +2 x^{2}}{y x +2 x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+y x +y^{2}}{y x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}14 x^{2} y^{3}+21 x^{2} y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +y+\left (2 y+2 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}-y^{2}+x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y-y^{\prime } x = 0
\] |
[_separable] |
✓ |
|
\[
{}3 x^{2} y+2 x^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 y^{3}+3 y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2} y+4 y x +2 y+\left (x^{2}+x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-y+\left (x^{4}-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 y x +2 y^{2}+y+\left (x^{2}+2 y x +x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\cos \left (t \right ) y+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}\, y+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 t y^{\prime } = \cos \left (t \right ) y
\] |
[_separable] |
✓ |
|
\[
{}2 t y y^{\prime } = 3 y^{2}-t^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y+t}{t -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 t y+y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\cos \left (t \right ) y+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}\, y+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 t y^{\prime } = \cos \left (t \right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 t y y^{\prime } = 3 y^{2}-t^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y+t}{t -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 t y+y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+y x = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y+y^{\prime } x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 y x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y x +\sqrt {x^{2}+1}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y = y x +x^{2} y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x +2 y = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x +y = y^{\prime } x
\] |
[_linear] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }+x = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{x +4 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y y^{\prime } = 2 y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+y^{2} = x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (y x -x^{2}\right ) y^{\prime }-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x +y+\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y \left (x^{2}-y x +y^{2}\right )+x y^{\prime } \left (x^{2}+y x +y^{2}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2}+y^{2} = 2 x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{\frac {y}{x}} x +y = y^{\prime } x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (3 y x -2 x^{2}\right ) y^{\prime } = 2 y^{2}-y x
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x +y+\left (x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x +y+\left (x +3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 y x -\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\frac {2 y x -1}{y}+\frac {\left (x +3 y\right ) y^{\prime }}{y^{2}} = 0
\] |
[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {y x +1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}} = 0
\] |
[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x +\ln \left (x \right )-y = 0
\] |
[_linear] |
✓ |
|
\[
{}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0
\] |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
|
\[
{}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y+\left (2 x -3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y y^{\prime } = x^{2}-y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2} = y x
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{2}+\left (x^{2}+y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x +y-\left (x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y+\left (3 x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}r^{\prime } = r \cot \left (\theta \right )
\] |
[_separable] |
✓ |
|
\[
{}\left (3 x +4 y\right ) y^{\prime }+2 x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
|
\[
{}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y x -y^{2}-x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (-2 x^{2}-3 y x \right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2}+y^{2} = 2 x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}3 y x +\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}4 y^{2} = x^{2} {y^{\prime }}^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (x +y-2 y x \right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y x
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {t}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (t^{2}+1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}t y^{\prime } = y+t^{3}
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{1+t}
\] |
[_separable] |
✓ |
|
\[
{}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0
\] |
[_separable] |
✓ |
|
\[
{}2 y^{\prime } x +3 x +y = 0
\] |
[_linear] |
✓ |
|
\[
{}\left (-x +y\right ) y^{\prime }+2 x +3 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x} = 1
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } = 2 y x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x \ln \left (x \right )}
\] |
[_separable] |
✓ |
|
\[
{}y-\left (x -2\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right )
\] |
[_linear] |
✓ |
|
\[
{}\left (3 x -y\right ) y^{\prime } = 3 y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0
\] |
[[_homogeneous, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y^{\prime } = y^{2}+3 y x +x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{2 x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 y x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x \ln \left (x \right )}
\] |
[_separable] |
✓ |
|
\[
{}y-\left (x -1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-y+y^{\prime } x = x^{2} \ln \left (x \right )
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}\left (3 x -y\right ) y^{\prime } = 3 y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0
\] |
[[_homogeneous, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y^{\prime } = y^{2}+3 y x +x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {-2 x +4 y}{x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{x +4 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +a y}{a x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y}
\] |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y-2 x}{x}
\] |
[_linear] |
✓ |
|
\[
{}x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } x = x +y
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{2 x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y y^{\prime } = x
\] |
[_separable] |
✓ |
|
\[
{}y+y^{\prime } x = x
\] |
[_linear] |
✓ |
|
\[
{}-y+y^{\prime } x = x^{3}
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x = y
\] |
[_separable] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {4 x y}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{x^{2}-1}
\] |
[_separable] |
✓ |
|
\[
{}-y^{2}+x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 y x = 0
\] |
[_separable] |
✓ |
|
\[
{}\cot \left (x \right ) y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = y x +y
\] |
[_separable] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime } = y x
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = 2 x^{2}-y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2}-y^{2}+x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime }-2 y x -2 y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+2 \,{\mathrm e}^{-\frac {y}{x}}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y+\left (1-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = x^{5}+x^{3} y^{2}+y
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = -x +y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x = y+x^{2}+9 y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}\left (y x -x^{2}\right ) y^{\prime } = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y+x^{2} = y^{\prime } x
\] |
[_linear] |
✓ |
|
\[
{}y^{2}-3 y x -2 x^{2} = \left (x^{2}-y x \right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 y x +x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\frac {x}{y}+2 = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}-y+y^{\prime } x = x \cot \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2}-y x +y^{2}-x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 y x +\left (x^{2}+2 y x +y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y \left (2 x -y+2\right )+2 \left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+y+y^{2}-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}y-2 x^{3} \tan \left (\frac {y}{x}\right )-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}\left (\sin \left (y\right )^{2}+x \cot \left (y\right )\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {2+y}{x +1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = y-{\mathrm e}^{\frac {y}{x}} x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = a \,x^{n} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \cot \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \sec \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \tan \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sqrt {X Y}
\] |
[_quadrature] |
✓ |
|
\[
{}y+x +y^{\prime } x = 0
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x +x^{2}-y = 0
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x = 1+x^{3}+y
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x = x^{m}+y
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x = x^{2} \sin \left (x \right )+y
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x = a y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = a x +b y
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x +\left (b x +a \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = x^{3}+\left (-2 x^{2}+1\right ) y
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x = x^{2}+y \left (1+y\right )
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } x = a \,x^{2}+y+b y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } x = \left (1-y x \right ) y
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } x = \left (y x +1\right ) y
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } x = x^{3}+\left (2 x^{2}+1\right ) y+x y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } x = y \left (1+2 y x \right )
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } x = y+\left (x^{2}-y^{2}\right ) f \left (x \right )
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } x = y \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x +x \cos \left (\frac {y}{x}\right )-y+x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y-x \cos \left (\frac {y}{x}\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y+x \sec \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+x \sec \left (\frac {y}{x}\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+x \sin \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y-x \tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = {\mathrm e}^{\frac {y}{x}} x +y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = x +y+{\mathrm e}^{\frac {y}{x}} x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y-2 x \tanh \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime } = a +b x +c \,x^{2}+y x
\] |
[_linear] |
✓ |
|
\[
{}x^{2} y^{\prime } = \left (b x +a \right ) y
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+x^{2}+y x +y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{2} y^{\prime } = \left (x +a y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime } = \left (a x +b y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{2} y^{\prime }+\left (x^{2}+y^{2}-x \right ) y = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime } = 5-y x
\] |
[_linear] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+a -y x = 0
\] |
[_linear] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime }+2 y x = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y
\] |
[_separable] |
✓ |
|
\[
{}\left (a^{2}+x^{2}\right ) y^{\prime } = b +y x
\] |
[_linear] |
✓ |
|
\[
{}x \left (x +1\right ) y^{\prime } = \left (1-2 x \right ) y
\] |
[_separable] |
✓ |
|
\[
{}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x^{2} y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}2 x^{2} y^{\prime } = 2 y x +\left (1-x \cot \left (x \right )\right ) \left (x^{2}-y^{2}\right )
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}a \,x^{2} y^{\prime } = x^{2}+a x y+b^{2} y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{3} y^{\prime } = 3-x^{2}+x^{2} y
\] |
[_linear] |
✓ |
|
\[
{}x^{3} y^{\prime } = y \left (y+x^{2}\right )
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{3} y^{\prime } = x^{2} \left (-1+y\right )+y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{3}+y
\] |
[_linear] |
✓ |
|
\[
{}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{3}+\left (-2 x^{2}+1\right ) y
\] |
[_linear] |
✓ |
|
\[
{}x^{2} \left (1-x \right ) y^{\prime } = \left (2-x \right ) x y-y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{3} y^{\prime } = y \left (x^{2}-y^{2}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (c \,x^{2}+b x +a \right ) y^{\prime }+x^{2}-\left (c \,x^{2}+b x +a \right ) y = y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{4} y^{\prime } = \left (x^{3}+y\right ) y
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}x \left (-x^{4}+1\right ) y^{\prime } = 2 x \left (x^{2}-y^{2}\right )+\left (-x^{4}+1\right ) y
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } \sqrt {X}+\sqrt {Y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sqrt {X} = \sqrt {Y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sqrt {X} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sqrt {X}+\sqrt {Y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sqrt {X} = \sqrt {Y}
\] |
[_quadrature] |
✓ |
|
\[
{}X^{{2}/{3}} y^{\prime } = Y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y
\] |
[_separable] |
✓ |
|
\[
{}\left (1-\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x \ln \left (x \right ) = a x \left (1+\ln \left (x \right )\right )-y
\] |
[_linear] |
✓ |
|
\[
{}x +y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y y^{\prime }+a x +b y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y y^{\prime }+4 \left (x +1\right ) x +y^{2} = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }+x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = x -y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime } = y \left (1+2 y x \right )
\] |
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -y\right ) y^{\prime } = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (2 x +y\right ) y^{\prime }+x -2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 y y^{\prime }+2 x +x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x -2 y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +2 y\right ) y^{\prime }+2 x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -2 y\right ) y^{\prime }+2 x +y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +4 y\right ) y^{\prime }+4 x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime }+x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime }+b x +a y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime } = b x +a y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y y^{\prime } = x +y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y y^{\prime }+x^{4}-y^{2} = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y y^{\prime } = a \,x^{3} \cos \left (x \right )+y^{2}
\] |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
|
\[
{}x y y^{\prime } = x^{2}-y x +y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x y y^{\prime }+2 x^{2}-2 y x -y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x y y^{\prime }+x^{2} \operatorname {arccot}\left (\frac {y}{x}\right )-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y y^{\prime }+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (x -y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (x +y\right ) y^{\prime } = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (x -y\right ) y^{\prime }+2 x^{2}+3 y x -y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (2 x +y\right ) y^{\prime } = x^{2}+y x -y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 y x -y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x +a \right ) \left (x +b \right ) y^{\prime } = y x
\] |
[_separable] |
✓ |
|
\[
{}2 x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}2 x y y^{\prime } = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (x +2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (2 x +3 y\right ) y^{\prime } = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}a x y y^{\prime } = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}a x y y^{\prime }+x^{2}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right )
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x^{2} y y^{\prime } = x^{2} \left (2 x +1\right )-y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 y x +2 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}8 x^{3} y y^{\prime }+3 x^{4}-6 x^{2} y^{2}-y^{4} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime } = y x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 y x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+2 y x -y^{2}\right ) y^{\prime }+x^{2}-2 y x +y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = x^{2}-2 y x +5 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x^{2}+4 y x -y^{2}\right ) y^{\prime } = x^{2}-4 y x -2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+2 y x +4 y^{2}\right ) y^{\prime }+2 x^{2}+6 y x +y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+a y^{2}\right ) y^{\prime } = y x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y x +a y^{2}\right ) y^{\prime } = a \,x^{2}+y x +y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a \,x^{2}+2 y x -a y^{2}\right ) y^{\prime }+x^{2}-2 a x y-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}+y^{2}\right ) y^{\prime } = \left (x^{2}+x^{4}+y^{2}\right ) y
\] |
[[_homogeneous, ‘class D‘], _rational] |
✓ |
|
\[
{}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-y x +y^{2}\right ) y^{\prime }+\left (x^{2}+y x +y^{2}\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-y x -y^{2}\right ) y^{\prime } = \left (x^{2}+y x -y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}+a x y+y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}+a x y+2 y^{2}\right ) y^{\prime } = \left (a x +2 y\right ) y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 y^{3} y^{\prime } = x^{3}-x y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a^{2} y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y^{\prime } x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 y x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (1+2 y x \right ) y^{\prime }+2 y x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2} x -\left (2 x +3 y\right ) y^{\prime }+6 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} x -\left (y x +1\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} x +\left (1-x \right ) y y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} x +\left (1-x^{2} y\right ) y^{\prime }-y x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2} = y^{2}
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2}
\] |
[_linear] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0
\] |
[_separable] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0
\] |
[_separable] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0
\] |
[_separable] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-y x -2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+y x +y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x y}{x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y+x y^{2}-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (-x +y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3}
\] |
[_linear] |
✓ |
|
\[
{}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{2}+\left (x^{2}+y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y = y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x +y-\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{\frac {y}{x}} x -y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2}+y^{2} = 2 x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}{\mathrm e}^{\frac {y}{x}} x +y = y^{\prime } x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y x -y^{2}-x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}-y+y^{\prime } x = x^{2} \sin \left (x \right )
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x +x y^{2}-y = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 y-x y \ln \left (x \right )-2 y^{\prime } x \ln \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = x +y+{\mathrm e}^{\frac {y}{x}} x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{3} y^{\prime }-y^{2}-x^{2} y = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (y x -x^{2}\right ) y^{\prime }+y^{2}-3 y x -2 x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2} y^{\prime }+x^{2}+y x +y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x y y^{\prime }+3 x^{2}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime }+y \tan \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } x = y
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2}-y x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y x +\left (y^{2}-x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{2}-y x +\left (x^{2}+y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{2} y^{\prime }-y x = \frac {1}{x}
\] |
[_linear] |
✓ |
|
\[
{}y+2 x -y^{\prime } x = 0
\] |
[_linear] |
✓ |
|
\[
{}\left (2 x +y\right ) y^{\prime }-x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right ) = 0
\] |
[_linear] |
✓ |
|
\[
{}3 x^{2} y+x^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-y+y^{\prime } x = x^{2}
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x = y x +y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = y
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = 3 x t^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 y-2 t y
\] |
[_separable] |
✓ |
|
\[
{}\left (t^{2}+1\right ) y^{\prime } = t y-y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+2 x +1
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x}
\] |
[_linear] |
✓ |
|
\[
{}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0
\] |
[_linear] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = y x +1
\] |
[_linear] |
✓ |
|
\[
{}-y+y^{\prime } x = x^{2}
\] |
[_linear] |
✓ |
|
\[
{}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{3}+1\right ) y^{\prime } = x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}\left (-x +2 y\right ) y^{\prime } = 2 x +y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y x +y^{2}+\left (x^{2}-y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{3}+y^{3} = 3 x y^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y-3 x +\left (3 x +4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2}-2 y x +5 y^{2} = \left (x^{2}+2 y x +y^{2}\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y+\left (x^{2}-4 x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}+2 y x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2} y^{\prime } = y^{2}-x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{2}+x^{2} y^{\prime } = x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x y y^{\prime } = x^{2}-y^{2}
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x} = x^{2}
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x = 2 y
\] |
[_separable] |
✓ |
|
\[
{}x +y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}4 y+y^{\prime } x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2}-x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y-\left (x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{2} \left (x^{2}+2\right )+\left (x^{3}+y^{3}\right ) \left (y-y^{\prime } x \right ) = 0
\] |
[[_homogeneous, ‘class D‘], _rational] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+y x = 0
\] |
[_separable] |
✓ |
|
\[
{}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{2}-x^{2}+x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } x +2 y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y \left (x -2 y\right )-x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime }+y = 2+2 x
\] |
[[_linear, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }-y = y x
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }+x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y-2 y x +x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2}+x^{2} y^{\prime } = x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 y x
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}-y+y^{\prime } x = x \tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y-{\mathrm e}^{\frac {y}{x}} x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}-y+y^{\prime } x = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y \cos \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x +y-\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}-y+y^{\prime } x = y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{2}+\left (x^{2}-y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2}+y x +y^{2} = x^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}\frac {1}{x^{2}-y x +y^{2}} = \frac {y^{\prime }}{2 y^{2}-y x}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}+\frac {y}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } x = y \ln \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\frac {x +2 y}{x} = 0
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x = x +\frac {y}{2}
\] |
[_linear] |
✓ |
|
\[
{}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2}-y x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x +y-\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{y^{\prime }}^{2}-a^{2} y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\frac {1}{y}+\sec \left (\frac {y}{x}\right )-\frac {x y^{\prime }}{y^{2}} = 0
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2}-y^{2}+2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}-y+y^{\prime } x = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}x +y y^{\prime }+y-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+y \cos \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = k y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}y y^{\prime } = x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}}{x^{2}+y x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = 2 y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = k y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } x = y+x^{2}+y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {x y}{x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x y y^{\prime } = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}}{y x -x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{5} y^{\prime }+y^{5} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 4 y x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y \tan \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-y \tan \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = 2 x^{2} y+y \ln \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y+\left (1-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2}-2 y^{2}+x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime }-3 y x -2 y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x = y+2 x \,{\mathrm e}^{-\frac {y}{x}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x -y-\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } x = 2 x -6 y
\] |
[_linear] |
✓ |
|
\[
{}x^{2} y^{\prime } = y^{2}+2 y x
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}-y x}{y^{2} \cos \left (\frac {x}{y}\right )}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y+y^{\prime } x = x
\] |
[_linear] |
✓ |
|
\[
{}x^{2} y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y}{2 x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 y x +x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-y+y^{\prime } x = 2 x
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 y x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } x = y
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x} = x^{2}
\] |
[_linear] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2} x -\left (2 x +3 y\right ) y^{\prime }+6 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2} x +\left (1-x^{2} y\right ) y^{\prime }-y x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} x -\left (y x +1\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-x^{2} y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+y x -x^{2}\right ) y^{\prime }+\left (-x +y\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y \left (x^{2}+y^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}6 {y^{\prime }}^{2} x -\left (3 x +2 y\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2}
\] |
[_linear] |
✓ |
|
\[
{}{y^{\prime }}^{2} x +y \left (1-x \right ) y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x \ln \left (x \right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{x +4 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{2}+x^{2} y^{\prime } = x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\frac {y^{\prime }}{x +y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\frac {y^{\prime }}{x} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {5 x^{2}-y x +y^{2}}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}y y^{\prime }-y = x
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-\frac {y}{x}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = b y
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = a
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = b y
\] |
[_quadrature] |
✓ |
|
\[
{}a \sin \left (x \right ) y x y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x \right )+\frac {y}{x}
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}5 y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\pi y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\sin \left (x \right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}f \left (x \right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y \sin \left (x \right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\pi y \sin \left (x \right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x \sin \left (x \right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{n} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{n} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime }-\left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x -y-\frac {x}{\ln \left (x \right )} = 0
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x -y-x^{2} \sin \left (x \right ) = 0
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x -y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } x +a y^{2}-y+b \,x^{2} = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } x +x y^{2}-y = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } x +x y^{2}-y-a \,x^{3} = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } x +x y^{2}-\left (2 x^{2}+1\right ) y-x^{3} = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } x -{\mathrm e}^{\frac {y}{x}} x -y-x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x +x \cos \left (\frac {y}{x}\right )-y+x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } x +x \tan \left (\frac {y}{x}\right )-y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime }-\left (x -1\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+x^{2}+y x +y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{2} y^{\prime }-y^{2}-y x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime }-y^{2}-y x -x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime }-y x +a = 0
\] |
[_linear] |
✓ |
|
\[
{}3 x^{2} y^{\prime }-7 y^{2}-3 y x -x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{3} y^{\prime }-y^{2}-x^{2} y = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (x^{2}-1\right ) y^{\prime }-\left (2 x^{2}-1\right ) y+a \,x^{3} = 0
\] |
[_linear] |
✓ |
|
\[
{}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (a \,x^{2}+b x +c \right ) \left (-y+y^{\prime } x \right )-y^{2}+x^{2} = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x \ln \left (x \right )+y-a x \left (1+\ln \left (x \right )\right ) = 0
\] |
[_linear] |
✓ |
|
\[
{}y y^{\prime }+a y+x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y y^{\prime }+y^{2}+4 \left (x +1\right ) x = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y y^{\prime }-x \,{\mathrm e}^{\frac {x}{y}} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (-x +2 y\right ) y^{\prime }-y-2 x = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y y^{\prime }-y^{2}+a \,x^{3} \cos \left (x \right ) = 0
\] |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
|
\[
{}\left (y x -x^{2}\right ) y^{\prime }+y^{2}-3 y x -2 x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x y y^{\prime }-y^{2}+a \,x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x^{2} y y^{\prime }+y^{2}-2 x^{3}-x^{2} = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime }-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+4 y^{2}\right ) y^{\prime }-y x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+2 y x +4 y^{2}\right ) y^{\prime }+2 x^{2}+6 y x +y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x \left (y^{2}+y x -x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }+y^{3}-x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 y^{3} y^{\prime }+x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }-y^{3}+6 x y^{2}+9 x^{2} y+4 x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime } \cot \left (\frac {y}{x}\right )+2 x \sin \left (\frac {y}{x}\right )-y \cot \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘]] |
✓ |
|
\[
{}\left (-y+y^{\prime } x \right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y \left (-x +y\right ) y^{\prime }-x y^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 y x +x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0
\] |
[_linear] |
✓ |
|
\[
{}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (-x +y\right ) y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (\sqrt {1+{y^{\prime }}^{2}}+y^{\prime }\right )-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right )}{x -1}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right ) x^{2}}{x}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y+x^{3} a \,{\mathrm e}^{x}+a \,x^{4}+a \,x^{3}-x y^{2} {\mathrm e}^{x}-x^{2} y^{2}-x y^{2}}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y+x^{3} a \ln \left (x +1\right )+a \,x^{4}+a \,x^{3}-x y^{2} \ln \left (x +1\right )-x^{2} y^{2}-x y^{2}}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y+x^{3} \ln \left (x \right )+x^{4}+x^{3}+7 x y^{2} \ln \left (x \right )+7 x^{2} y^{2}+7 x y^{2}}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y+x^{3} b \ln \left (\frac {1}{x}\right )+x^{4} b +b \,x^{3}+x a y^{2} \ln \left (\frac {1}{x}\right )+x^{2} a y^{2}+a x y^{2}}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y+\ln \left (\left (x +1\right ) \left (x -1\right )\right ) x^{3}+7 \ln \left (\left (x +1\right ) \left (x -1\right )\right ) x y^{2}}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y-\ln \left (\frac {x +1}{x -1}\right ) x^{3}+\ln \left (\frac {x +1}{x -1}\right ) x y^{2}}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y+{\mathrm e}^{\frac {x +1}{x -1}} x^{3}+{\mathrm e}^{\frac {x +1}{x -1}} x y^{2}}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y x -y-{\mathrm e}^{x +1} x^{3}+{\mathrm e}^{x +1} x y^{2}}{\left (x -1\right ) x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y \ln \left (x -1\right )+x^{4}+x^{3}+x^{2} y^{2}+x y^{2}}{\ln \left (x -1\right ) x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y \ln \left (x -1\right )+{\mathrm e}^{x +1} x^{3}+7 \,{\mathrm e}^{x +1} x y^{2}}{\ln \left (x -1\right ) x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {-y \,{\mathrm e}^{x}+y x -x^{3} \ln \left (x \right )-x^{3}-x y^{2} \ln \left (x \right )-x y^{2}}{\left (x -{\mathrm e}^{x}\right ) x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {x y \ln \left (x \right )-y+2 x^{5} b +2 x^{3} a y^{2}}{\left (x \ln \left (x \right )-1\right ) x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y x +x^{3}+x y^{2}+y^{3}}{x^{2}}
\] |
[[_homogeneous, ‘class D‘], _rational, _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {y x +x +y^{2}}{\left (x -1\right ) \left (x +y\right )}
\] |
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{3} y+x^{3}+x y^{2}+y^{3}}{\left (x -1\right ) x^{3}}
\] |
[[_homogeneous, ‘class D‘], _rational, _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {y \ln \left (x \right )+\cosh \left (x \right ) x a y^{2}+\cosh \left (x \right ) x^{3} b}{x \ln \left (x \right )}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {y \left (x^{3}+x^{2} y+y^{2}\right )}{x^{2} \left (x -1\right ) \left (x +y\right )}
\] |
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {\sin \left (\frac {y}{x}\right ) \left (y+2 x^{2} \sin \left (\frac {y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )\right )}{2 \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right )}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {\sin \left (\frac {y}{x}\right ) \left (y+2 x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )\right )}{2 \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right )}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{2} \sin \left (\frac {y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x \left (x +1\right )}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}{2 \cos \left (\frac {y}{x}\right ) \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right ) \left (x +1\right )}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y \left (y^{2}+y x +x^{2}+x \right )}{x^{2}}
\] |
[[_homogeneous, ‘class D‘], _rational, _Abel] |
✓ |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (-a \,x^{2}+y^{2}\right )+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (-x^{2}-2 y x +y^{2}\right )+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (-a y^{2}-b \,x^{2}\right )+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (x^{2}+2 y x -y^{2}\right )+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (-7 x y^{2}-x^{3}\right )+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
|
\[
{}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime } = f \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (a \,x^{2}+b x +e \right ) \left (-y+y^{\prime } x \right )-y^{2}+x^{2} = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}\left (a \,x^{n}+b \,x^{m}+c \right ) \left (-y+y^{\prime } x \right )+s \,x^{k} \left (y^{2}-\lambda \,x^{2}\right ) = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}\frac {2 y x +1}{y}+\frac {\left (-x +y\right ) y^{\prime }}{y^{2}} = 0
\] |
[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y+x +y^{\prime } x = 0
\] |
[_linear] |
✓ |
|
\[
{}{\mathrm e}^{\frac {y}{x}} x +y-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2}-y x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{3}+x^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2}-y x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x +y-\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}-y+y^{\prime } x = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
|
\[
{}3 x^{2}+6 y x +3 y^{2}+\left (2 x^{2}+3 y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } x -y+2 x^{2} y-x^{3} = 0
\] |
[_linear] |
✓ |
|
\[
{}x +y y^{\prime }+y-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (-x +y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y+x y^{2}-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 \left (y x +2 y^{\prime }\right ) y^{\prime }+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {2 x}{t}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = -\frac {t}{x}
\] |
[_separable] |
✓ |
|
\[
{}2 t x^{\prime } = x
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {2 x}{1+t}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 x t}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{\prime } = \left (a +\frac {b}{t}\right ) x
\] |
[_separable] |
✓ |
|
\[
{}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t}
\] |
[_linear] |
✓ |
|
\[
{}x^{\prime } = 2 x t
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime }+p \left (t \right ) x = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}t^{2} y^{\prime }+2 t y-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{3}+3 t x^{2} x^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2}-t^{2} x^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y = x +1
\] |
[[_linear, ‘class A‘]] |
✓ |
|
\[
{}2 x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{2}+2 y x -x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}4 y x +\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x +y-y^{\prime } x = 0
\] |
[_linear] |
✓ |
|
\[
{}2 y x +3 y^{2}-\left (x^{2}+2 y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \tan \left (\frac {y}{x}\right )+y-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x^{2}+3 y^{2}-2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x^{2}+9 y x +5 y^{2}-\left (6 x^{2}+4 y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x +2 y+\left (2 x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -y-\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+2 y^{2}+\left (4 y x -y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 x^{2}+2 y x +y^{2}+\left (x^{2}+2 y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x}
\] |
[_separable] |
✓ |
|
\[
{}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 x -5 y+\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x^{2}+y x +y^{2}+2 x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -7 y}{3 y-8 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 y x -x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +7 y}{2 x -2 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x y}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+y x = \frac {y^{3}}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{\prime } = x t^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = k y
\] |
[_separable] |
✓ |
|
\[
{}i^{\prime } = p \left (t \right ) i
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \lambda x
\] |
[_quadrature] |
✓ |
|
\[
{}y x +y^{2}+x^{2}-x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y = y^{\prime } x +\frac {1}{y}
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x -y\right ) y-x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{\prime }+5 x = 10 t +2
\] |
[[_linear, ‘class A‘]] |
✓ |
|
\[
{}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}}
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x -y\right ) y-x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}5 y^{\prime }-y x = 0
\] |
[_separable] |
✓ |
|
\[
{}y-y^{\prime } x = 0
\] |
[_separable] |
✓ |
|
\[
{}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}r^{\prime }+r \tan \left (t \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y-x +\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+x +y^{\prime } x = 0
\] |
[_linear] |
✓ |
|
\[
{}x +y+\left (-x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}8 y+10 x +\left (7 x +5 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t -s+t s^{\prime } = 0
\] |
[_linear] |
✓ |
|
\[
{}x y^{2} y^{\prime } = x^{3}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \cos \left (\frac {y}{x}\right ) \left (y+y^{\prime } x \right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}}
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y = y^{\prime } x +y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{x}-\sqrt {3}
\] |
[_linear] |
✓ |
|
\[
{}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }-y x -\alpha = 0
\] |
[_linear] |
✓ |
|
\[
{}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}-y+y^{\prime } x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x} = 1
\] |
[_linear] |
✓ |
|
\[
{}2 y x +x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+3 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 y^{\prime } x -y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-2 y x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x \ln \left (x \right )-\left (1+\ln \left (x \right )\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -y x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{x +3 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x y}{x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{-x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x \right )+\frac {y}{x}
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = 3 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y-x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right )
\] |
[_linear] |
✓ |
|
\[
{}x -y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y-y^{\prime } x = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2}-y+y^{\prime } x = 0
\] |
[_linear] |
✓ |
|
\[
{}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{-x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{-x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{-x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{-x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x y}{x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime }-i y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y+1}{1+t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t^{4} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t}{y}
\] |
[_separable] |
✓ |
|
\[
{}w^{\prime } = \frac {w}{t}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = -x t
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (1+t \right ) y
\] |
[_separable] |
✓ |
|
\[
{}\theta ^{\prime } = 2
\] |
[_quadrature] |
✓ |
|
\[
{}v^{\prime } = -\frac {v}{R C}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -\frac {y}{t}+2
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = -\frac {y}{t}+2
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } = 3 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = t y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t y}{t^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = -x t
\] |
[_separable] |
✓ |
|
\[
{}y y^{\prime } = 2 x
\] |
[_separable] |
✓ |
|
\[
{}\left (x -2\right ) y^{\prime } = 3+y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = y^{2}+9
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {-1+y^{2}}{y x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = y+x^{2} \cos \left (x \right )
\] |
[_linear] |
✓ |
|
\[
{}-y+y^{\prime } x = x^{2} {\mathrm e}^{-x^{2}}
\] |
[_linear] |
✓ |
|
\[
{}x^{2} y^{\prime }-y x = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}+\frac {y}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x -y}{x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x} = \frac {1}{y}
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 y x +2 x^{2}\right ) y^{\prime } = x^{2}+2 y x +2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 y x +y^{2}+\left (x^{2}+2 y x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x^{3}+y^{3}+x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}3 x y^{3}-y+y^{\prime } x = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y y^{\prime } = 2 x^{2}+2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y}{2 x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y y^{\prime } = x^{2}+y x +y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x y^{3} y^{\prime } = y^{4}-x^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x -y-y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+2 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {2 y}{x}-3
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime }+2 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime }+y \cos \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = y \sqrt {t}
\] |
[_separable] |
✓ |
|
\[
{}t y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \tan \left (t \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {t}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y+1}{1+t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+k y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {\frac {y}{t}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \cos \left (t \right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y f \left (t \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y f \left (t \right )
\] |
[_separable] |
✓ |
|
\[
{}t y^{\prime }+y = t
\] |
[_linear] |
✓ |
|
\[
{}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1}
\] |
[_separable] |
✓ |
|
\[
{}p^{\prime } = t^{3}+\frac {p}{t}
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{t} = \ln \left (t \right )
\] |
[_linear] |
✓ |
|
\[
{}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 t y^{2}+y^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2}+2 t y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
|
\[
{}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
|
\[
{}2 t y^{2}+2 t^{2} y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0
\] |
[_linear] |
✓ |
|
\[
{}t^{2} y+t^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 t y+y^{2}-t^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t y^{\prime }-y = t y^{3} \sin \left (t \right )
\] |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{t} = t y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t}
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (\frac {t}{y+t}\right )+{\mathrm e}^{\frac {2 y}{t}} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y \ln \left (\frac {t}{y}\right )+\frac {t^{2} y^{\prime }}{y+t} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 t +\left (y-3 t \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 y-3 t +t y^{\prime } = 0
\] |
[_linear] |
✓ |
|
\[
{}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}t^{2}+t y+y^{2}-t y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}t^{3}+y^{3}-t y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {t +4 y}{4 t +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t -y+t y^{\prime } = 0
\] |
[_linear] |
✓ |
|
\[
{}y+\left (y+t \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 t^{2}-7 t y+5 y^{2}+t y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}t +y-t y^{\prime } = 0
\] |
[_linear] |
✓ |
|
\[
{}y^{3}-t^{3}-t y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime }-\frac {2 y}{x} = -x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}-t^{2}}{t y}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t}
\] |
[_separable] |
✓ |
|
\[
{}3 t +\left (t -4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y-t +\left (y+t \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}r^{\prime } = \frac {r^{2}+t^{2}}{r t}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{\prime } = \frac {5 t x}{t^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y-t y^{\prime } = 2 y^{2} \ln \left (t \right )
\] |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = -\frac {y}{t -2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1+y}{x -1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = -\frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } x = 2 x -y
\] |
[_linear] |
✓ |
|
\[
{}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y^{\prime }\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{y^{\prime }} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\tan \left (y^{\prime }\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime } = -1+y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x = y+x \cos \left (\frac {y}{x}\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x -y+y^{\prime } x = 0
\] |
[_linear] |
✓ |
|
\[
{}x^{2} y^{\prime } = x^{2}-y x +y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}2 x^{2} y^{\prime } = x^{2}+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y-x +\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+y^{\prime } x = 2 x
\] |
[_linear] |
✓ |
|
\[
{}3 x y^{2} y^{\prime }-2 y^{3} = x^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime }+3 y x = y \,{\mathrm e}^{x^{2}}
\] |
[_separable] |
✓ |
|
\[
{}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 x +\frac {x^{2}+y^{2}}{x^{2} y} = \frac {\left (x^{2}+y^{2}\right ) y^{\prime }}{x y^{2}}
\] |
[[_homogeneous, ‘class D‘], _exact, _rational] |
✓ |
|
\[
{}\frac {x y}{\sqrt {x^{2}+1}}+2 y x -\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x^{2}+y-y^{\prime } x = 0
\] |
[_linear] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}5 y x -4 y^{2}-6 x^{2}+\left (y^{2}-8 y x +\frac {5 x^{2}}{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x y y^{\prime }-y^{2} = x^{4}
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\frac {1}{x^{2}-y x +y^{2}} = \frac {y^{\prime }}{2 y^{2}-y x}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3}
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
|
\[
{}x^{2}+y^{2}-x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y+x y^{2}-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
|
\[
{}{y^{\prime }}^{4} = 1
\] |
[_quadrature] |
✓ |
|