| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 3101 |
\begin{align*}
t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.237 |
|
| 3102 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| 3103 |
\begin{align*}
y^{\prime \prime }+4 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| 3104 |
\begin{align*}
y^{\prime }&=y x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| 3105 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| 3106 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=9 \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -6 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| 3107 |
\begin{align*}
1&=x^{2}-9 y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| 3108 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| 3109 |
\begin{align*}
x^{\prime }+x&=2 \sin \left (t \right ) \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| 3110 |
\begin{align*}
x^{2} y^{\prime \prime \prime \prime }+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| 3111 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| 3112 |
\begin{align*}
y^{\prime \prime \prime }+6 y^{\prime \prime }+12 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| 3113 |
\begin{align*}
x^{\prime \prime }-6 x^{\prime }+8 x&=2 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| 3114 |
\begin{align*}
t x^{\prime \prime }+\left (3 t -1\right ) x^{\prime }+3 x&=0 \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.239 |
|
| 3115 |
\begin{align*}
y^{\prime \prime }+t^{2} y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| 3116 |
\begin{align*}
y^{\prime \prime \prime \prime }+104 y^{\prime \prime \prime }+2740 y^{\prime \prime }&=5 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| 3117 |
\begin{align*}
y^{\prime }&=y^{2}-x \\
y \left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| 3118 |
\begin{align*}
\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.239 |
|
| 3119 |
\begin{align*}
y^{\prime \prime }+a y^{2}+b x +c&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.239 |
|
| 3120 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| 3121 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }&=f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| 3122 |
\begin{align*}
y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime }&=16 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| 3123 |
\begin{align*}
y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3124 |
\begin{align*}
y_{1}^{\prime }&=3 y_{1}+y_{2} \\
y_{2}^{\prime }&=-y_{1}+y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3125 |
\begin{align*}
y^{\prime } x&=1-x +2 y \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✗ |
0.240 |
|
| 3126 |
\begin{align*}
y^{2}+y x +1+\left (x^{2}+y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.240 |
|
| 3127 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.240 |
|
| 3128 |
\begin{align*}
\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.240 |
|
| 3129 |
\begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3130 |
\begin{align*}
-2 y+2 y^{\prime } x -x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3131 |
\begin{align*}
x^{\prime }&=13 x \\
y^{\prime }&=13 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3132 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3133 |
\begin{align*}
x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}}&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3134 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=3 x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3135 |
\begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime }&=3 x^{2}+4 \sin \left (x \right )-2 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3136 |
\begin{align*}
y^{\prime }+b y&=1 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3137 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3138 |
\begin{align*}
y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y&={\mathrm e}^{2 x} \cos \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3139 |
\begin{align*}
y^{\prime \prime \prime \prime }-5 y^{\prime }&=12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 3140 |
\begin{align*}
a \,x^{r} y^{s}+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.241 |
|
| 3141 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.241 |
|
| 3142 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.241 |
|
| 3143 |
\begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.241 |
|
| 3144 |
\begin{align*}
y^{\prime }+2 y&={\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 3145 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+8 y&=\sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 3146 |
\begin{align*}
r^{\prime }&=0 \\
r \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 3147 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 3148 |
\begin{align*}
x^{\prime \prime }+9 x&=1 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3149 |
\begin{align*}
x^{\prime \prime }-4 x&=3 t \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3150 |
\begin{align*}
y^{\prime \prime }-t y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3151 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3152 |
\begin{align*}
x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3153 |
\begin{align*}
x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3154 |
\begin{align*}
y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3155 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.242 |
|
| 3156 |
\begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3157 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 y^{\prime } x +100 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3158 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3159 |
\begin{align*}
y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (\infty \right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 3160 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3161 |
\begin{align*}
y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{x} \left (\left (28+6 x \right ) \cos \left (2 x \right )+\left (11-12 x \right ) \sin \left (2 x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3162 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \left (x +1\right ) \\
y \left (-1\right ) &= -6 \\
y^{\prime }\left (-1\right ) &= {\frac {43}{6}} \\
y^{\prime \prime }\left (-1\right ) &= -{\frac {5}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3163 |
\begin{align*}
y^{\prime \prime }-t^{3} y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3164 |
\begin{align*}
y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3165 |
\begin{align*}
{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3166 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3167 |
\begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.243 |
|
| 3168 |
\begin{align*}
3 t \left (1+t \right ) y^{\prime \prime }+y^{\prime } t -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.243 |
|
| 3169 |
\begin{align*}
y^{\prime \prime }-2 y^{3}-y x +a&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.243 |
|
| 3170 |
\begin{align*}
{y^{\prime }}^{3}-{\mathrm e}^{2 x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3171 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y&=8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3172 |
\begin{align*}
x^{\prime }-3 x&=3 t^{3}+3 t^{2}+2 t +1 \\
x \left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3173 |
\begin{align*}
{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 y^{\prime } y^{2} x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3174 |
\begin{align*}
y^{\prime \prime \prime }-y&=5 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3175 |
\begin{align*}
y^{\prime }&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3176 |
\begin{align*}
y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }-8 y^{\prime \prime }&=48 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3177 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\delta \left (t \right ) \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 3178 |
\begin{align*}
x_{1}^{\prime }&=-x_{1} \\
x_{2}^{\prime }&=-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 3179 |
\begin{align*}
2 y^{\prime }+y&=y^{3} \left (x -1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 3180 |
\begin{align*}
y^{\prime \prime }&=\left (x -1\right ) y \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 3181 |
\begin{align*}
16 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x \left (9 x^{2}+1\right ) y^{\prime }+\left (49 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| 3182 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| 3183 |
\begin{align*}
x^{\prime \prime }-2 x^{\prime }+2 x&={\mathrm e}^{-t} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 3184 |
\(\left [\begin {array}{cc} 0 & 1 \\ 2 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.244 |
|
| 3185 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }&=\frac {x -1}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 3186 |
\begin{align*}
y^{\prime } x&=-\frac {1}{\ln \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 3187 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=6 x \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 3188 |
\begin{align*}
y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime }&=9 \,{\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 3189 |
\begin{align*}
y^{\prime \prime }+y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 3190 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y&={\mathrm e}^{-x} \left (\left (1-22 x \right ) \cos \left (2 x \right )-\left (1+6 x \right ) \sin \left (2 x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| 3191 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=F \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| 3192 |
\begin{align*}
y^{\prime }+\frac {m y}{x}&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| 3193 |
\begin{align*}
x^{{3}/{2}} y^{\prime }&=a +b \,x^{{3}/{2}} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.245 |
|
| 3194 |
\begin{align*}
y^{\prime \prime }&=a +b x +c y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.245 |
|
| 3195 |
\begin{align*}
x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| 3196 |
\begin{align*}
x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.245 |
|
| 3197 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (6 x +4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.245 |
|
| 3198 |
\begin{align*}
3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.245 |
|
| 3199 |
\(\left [\begin {array}{cc} -7 & 6 \\ 12 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.245 |
|
| 3200 |
\begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.245 |
|