| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 3501 |
\begin{align*}
y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| 3502 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| 3503 |
\begin{align*}
y^{\prime \prime }&=x y^{2}-y^{\prime } \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.273 |
|
| 3504 |
\begin{align*}
t y^{\prime \prime }+\left (2+4 t \right ) y^{\prime }+\left (4+4 t \right ) y&=0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.273 |
|
| 3505 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| 3506 |
\begin{align*}
y^{\prime \prime }-t^{3} y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| 3507 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= A \\
y^{\prime }\left (0\right ) &= B \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| 3508 |
\begin{align*}
y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| 3509 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| 3510 |
\begin{align*}
\sin \left (x \right )-\cos \left (x \right ) y-3 \sin \left (x \right ) y^{\prime }+3 \left (\cos \left (x \right )+1\right ) y^{\prime \prime }+\left (x +\sin \left (x \right )\right ) y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.274 |
|
| 3511 |
\begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| 3512 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=4 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| 3513 |
\begin{align*}
y^{\prime \prime }-2 s y^{\prime }-2 y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.274 |
|
| 3514 |
\begin{align*}
x^{\prime }+y&=4 \\
x-y^{\prime }&=3 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| 3515 |
\begin{align*}
\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y&=0 \\
y \left (3\right ) &= 2 \\
y^{\prime }\left (3\right ) &= 0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| 3516 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| 3517 |
\begin{align*}
y^{\prime }-\frac {\left (x +1\right ) y}{3 x}&=y^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| 3518 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=12 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| 3519 |
\begin{align*}
x \sqrt {x^{2}+y^{2}}-\frac {x^{2} y y^{\prime }}{y-\sqrt {x^{2}+y^{2}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.275 |
|
| 3520 |
\begin{align*}
y^{\prime \prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| 3521 |
\begin{align*}
\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (-x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.275 |
|
| 3522 |
\begin{align*}
3 t \left (1+t \right ) y^{\prime \prime }+y^{\prime } t -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.275 |
|
| 3523 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| 3524 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| 3525 |
\begin{align*}
2 \left (x -1\right ) y^{\prime }&=3 y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| 3526 |
\begin{align*}
6 y^{\prime \prime }+6 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| 3527 |
\begin{align*}
12 y^{\prime \prime }+8 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| 3528 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| 3529 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.276 |
|
| 3530 |
\begin{align*}
9 \left (x +3\right ) x^{2} y^{\prime \prime }+3 x \left (3+7 x \right ) y^{\prime }+\left (4 x +3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.276 |
|
| 3531 |
\begin{align*}
4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.276 |
|
| 3532 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-4 x^{2}+1\right ) y^{\prime }+\left (2 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.276 |
|
| 3533 |
\begin{align*}
y^{\prime \prime }+d +b x y+c y+a y^{3}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.276 |
|
| 3534 |
\begin{align*}
y^{\prime }+3 y&=\delta \left (x -2\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| 3535 |
\begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| 3536 |
\begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| 3537 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (2+x \right ) y&={\mathrm e}^{x} x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.276 |
|
| 3538 |
\begin{align*}
y^{\prime }&={\mathrm e}^{t} t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| 3539 |
\begin{align*}
y^{\prime \prime \prime }+9 y^{\prime \prime }+27 y^{\prime }+27 y&=15 x^{2} {\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| 3540 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| 3541 |
\begin{align*}
2 \left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.277 |
|
| 3542 |
\begin{align*}
5 y^{\prime \prime }-2 y^{\prime } x +10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.277 |
|
| 3543 |
\begin{align*}
\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.277 |
|
| 3544 |
\begin{align*}
2 \left (1-x \right ) x y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.277 |
|
| 3545 |
\begin{align*}
2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.277 |
|
| 3546 |
\begin{align*}
\left (1-x \right ) x^{2} y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.277 |
|
| 3547 |
\begin{align*}
y y^{\prime \prime }+y^{2}-a x -b&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
0.277 |
|
| 3548 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+17 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -12 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.277 |
|
| 3549 |
\begin{align*}
y^{\prime \prime }-y^{2}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.277 |
|
| 3550 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.277 |
|
| 3551 |
\begin{align*}
\left (x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| 3552 |
\begin{align*}
3 y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| 3553 |
\begin{align*}
{y^{\prime }}^{2}-5 y^{\prime }+6&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| 3554 |
\begin{align*}
\left (-x^{3}+1\right ) y^{\prime }-2 \left (x +1\right ) y&=y^{{5}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| 3555 |
\begin{align*}
x^{\prime }+y^{\prime }-x&=y+t \\
x^{\prime }+y^{\prime }&=2 x+3 y+{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.278 |
|
| 3556 |
\(\left [\begin {array}{ccc} 3 & -2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.278 |
|
| 3557 |
\begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -1 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| 3558 |
\begin{align*}
y^{\prime }&={\mathrm e}^{y}+y x \\
y \left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✗ |
✓ |
0.278 |
|
| 3559 |
\begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=2 \,{\mathrm e}^{-5 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| 3560 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=\sin \left (x \right ) {\mathrm e}^{x} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| 3561 |
\begin{align*}
\left (x -2\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3562 |
\begin{align*}
x^{\prime \prime }+\frac {2 x^{\prime }}{5}+\frac {226 x}{25}&=6 \,{\mathrm e}^{-\frac {t}{5}} \cos \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3563 |
\begin{align*}
y^{\prime }&=1+3 \tan \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3564 |
\begin{align*}
{y^{\prime }}^{2}+a y^{\prime }+b x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3565 |
\begin{align*}
x {y^{\prime }}^{2}+\left (-y+a \right ) y^{\prime }+b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.279 |
|
| 3566 |
\begin{align*}
g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.279 |
|
| 3567 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.279 |
|
| 3568 |
\begin{align*}
x^{\prime }&=3 x \\
y^{\prime }&=-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3569 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 1 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3570 |
\begin{align*}
\left (y^{\prime }+y+x \right ) \left (y^{\prime } x +x +y\right ) \left (y^{\prime }+2 x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3571 |
\begin{align*}
y&=y^{\prime } x +a y^{\prime } \left (1-y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3572 |
\begin{align*}
x^{3} y^{\prime \prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3573 |
\begin{align*}
y+y^{\prime }&=t \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3574 |
\begin{align*}
6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3575 |
\begin{align*}
y_{1}^{\prime }-y_{1}&=-2 y_{2} \\
y_{2}^{\prime }-y_{2}&=2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 2 \\
y_{2} \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| 3576 |
\begin{align*}
y^{\prime \prime }&=y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3577 |
\begin{align*}
x_{1}^{\prime }&=6 x_{1} \\
x_{2}^{\prime }&=-3 x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3578 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-3 x_{2} \\
x_{2}^{\prime }&=3 x_{1}+7 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3579 |
\begin{align*}
5 y^{\prime }-3 x^{\prime }-5 y&=5 t \\
3 x^{\prime }-5 y^{\prime }-2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.280 |
|
| 3580 |
\begin{align*}
x^{2}+y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3581 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3582 |
\begin{align*}
2 y^{3}+2+3 y^{\prime } y^{2} x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3583 |
\begin{align*}
\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.280 |
|
| 3584 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.280 |
|
| 3585 |
\begin{align*}
x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.280 |
|
| 3586 |
\begin{align*}
x y^{\prime \prime \prime }+2 y^{\prime \prime }&=6 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3587 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&=t^{2}+7 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3588 |
\begin{align*}
x^{\prime }&=3 x-y \\
y^{\prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3589 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime }&=3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
y^{\prime \prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.280 |
|
| 3590 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.280 |
|
| 3591 |
\begin{align*}
x^{\prime }-2 x+3 y&=0 \\
-2 x+y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3592 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3593 |
\begin{align*}
y^{\prime }&=-\sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| 3594 |
\begin{align*}
x^{\prime \prime }+4 x&=\cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.281 |
|
| 3595 |
\begin{align*}
y^{\prime }&=x^{2}+y^{2} \\
y \left (2\right ) &= 0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
0.281 |
|
| 3596 |
\begin{align*}
3 y^{\prime } x -3 x y^{4} \ln \left (x \right )-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.281 |
|
| 3597 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=54 t \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.281 |
|
| 3598 |
\begin{align*}
x^{2} y^{\prime \prime \prime \prime }&=2 y^{\prime \prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.281 |
|
| 3599 |
\begin{align*}
y^{\prime }&=-2 y x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.281 |
|
| 3600 |
\begin{align*}
4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.281 |
|