2.3.57 Problems 5601 to 5700

Table 2.645: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

5601

18431

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.444

5602

21897

\begin{align*} x^{\prime }+3 x-y&=0 \\ y^{\prime }+y-3 x&=0 \\ \end{align*}

0.444

5603

21920

\begin{align*} y^{\prime \prime }+4 y&=t \sin \left (t \right ) \\ y \left (0\right ) &= {\frac {7}{9}} \\ y^{\prime }\left (0\right ) &= -{\frac {5}{2}} \\ \end{align*}
Using Laplace transform method.

0.444

5604

22819

\begin{align*} y^{\prime \prime }+y&=3 \delta \left (t -\pi \right ) \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.444

5605

22857

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.444

5606

2058

\begin{align*} x^{2} \left (3 x +4\right ) y^{\prime \prime }-x \left (-3 x +4\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.445

5607

9130

\begin{align*} \cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

0.445

5608

9448

\begin{align*} y^{\prime \prime }+3 y^{\prime }-5 y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.445

5609

9615

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.445

5610

12944

\begin{align*} 2 y^{\prime } \left (1+y^{\prime }\right )+\left (x -y\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.445

5611

14086

\begin{align*} y \left (3-4 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\ \end{align*}

0.445

5612

17641

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 y^{\prime } x +16 y&=\frac {1}{x^{3}} \\ \end{align*}

0.445

5613

22850

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.445

5614

23706

\begin{align*} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(x=1\).

0.445

5615

4034

\begin{align*} 4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.446

5616

16826

\begin{align*} y^{\prime }+\frac {y}{x -1}&=0 \\ \end{align*}
Series expansion around \(x=3\).

0.446

5617

18375

\begin{align*} y^{\prime \prime }-\sin \left (x \right ) y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.446

5618

22844

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.446

5619

23695

\begin{align*} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}
Series expansion around \(x=1\).

0.446

5620

24058

\begin{align*} y^{\prime \prime }+y&=x^{2} \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi ^{2}}{4} \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \pi \\ \end{align*}
Using Laplace transform method.

0.446

5621

25817

\begin{align*} 1+{\mathrm e}^{3 x} y^{\prime }&=0 \\ \end{align*}

0.446

5622

1023

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=-2 x_{1}-2 x_{2}-3 x_{3} \\ x_{3}^{\prime }&=2 x_{1}+3 x_{2}+4 x_{3} \\ \end{align*}

0.447

5623

2621

\begin{align*} y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(t=0\).

0.447

5624

2826

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2} \\ x_{2}^{\prime }&=-2 x_{1}+5 x_{2} \\ \end{align*}

0.447

5625

8258

\begin{align*} y^{\prime }&=2 \\ \end{align*}

0.447

5626

8571

\begin{align*} y^{\prime \prime }-y^{\prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.447

5627

9475

\begin{align*} x^{\prime }&=5 x+3 y \\ y^{\prime }&=-6 x-4 y \\ \end{align*}

0.447

5628

9633

\begin{align*} y^{\prime \prime }+9 y&=\cos \left (3 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

0.447

5629

14806

\(\left [\begin {array}{ccc} -5 & -12 & 6 \\ 1 & 5 & -1 \\ -7 & -10 & 8 \end {array}\right ]\)

N/A

N/A

N/A

0.447

5630

19020

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=\frac {x_{1}}{2}-3 x_{2} \\ \end{align*}

0.447

5631

22186

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (2 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=-1\).

0.447

5632

22918

\begin{align*} x^{\prime }+x+2 y^{\prime }+3 y&=0 \\ x^{\prime }-2 x+5 y^{\prime }&=0 \\ \end{align*}

0.447

5633

1406

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-5 x_{1}-x_{2} \\ \end{align*}

0.448

5634

2045

\begin{align*} x^{2} \left (1-2 x \right ) y^{\prime \prime }+3 y^{\prime } x +\left (4 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.448

5635

4006

\begin{align*} x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{\left (-x^{2}+1\right )^{2}}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.448

5636

4023

\begin{align*} 4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.448

5637

4562

\begin{align*} x_{1}^{\prime }&=x_{1}-3 x_{2} \\ x_{2}^{\prime }&=3 x_{1}+x_{2} \\ \end{align*}

0.448

5638

7140

\begin{align*} y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

0.448

5639

9045

\begin{align*} y_{1}^{\prime }&=y_{2} \\ y_{2}^{\prime }&=6 y_{1}+y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

0.448

5640

9748

\begin{align*} y^{\prime } \left (y^{\prime } x -y+k \right )+a&=0 \\ \end{align*}

0.448

5641

10943

\begin{align*} \left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 y x&=0 \\ \end{align*}

0.448

5642

12894

\begin{align*} y^{\prime \prime } x -x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2}&=0 \\ \end{align*}

0.448

5643

14808

\(\left [\begin {array}{ccc} -2 & 6 & -18 \\ 12 & -23 & 66 \\ 5 & -10 & 29 \end {array}\right ]\)

N/A

N/A

N/A

0.448

5644

16041

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=2 y-z \\ z^{\prime }&=-y+2 z \\ \end{align*}

0.448

5645

18031

\begin{align*} y \left (y-2 y^{\prime } x \right )^{2}&=2 y^{\prime } \\ \end{align*}

0.448

5646

22267

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=8 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (1\right ) &= 2 \\ y \left (1\right ) &= 3 \\ \end{align*}

0.448

5647

23579

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

0.448

5648

1188

\begin{align*} y^{\prime }&=y^{2} \left (y^{2}-1\right ) \\ \end{align*}

0.449

5649

6323

\begin{align*} y^{\prime \prime }&=g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

0.449

5650

8577

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {15}{8}} \\ \end{align*}
Series expansion around \(x=0\).

0.449

5651

10719

\begin{align*} \left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y&=0 \\ \end{align*}

0.449

5652

16019

\begin{align*} x^{\prime }&=-\frac {9 x}{10}-2 y \\ y^{\prime }&=x+\frac {11 y}{10} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.449

5653

17606

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=\sec \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 1 \\ \end{align*}

0.449

5654

21247

\begin{align*} x^{\prime }&=x-6 y \\ y^{\prime }&=-2 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.449

5655

23564

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}

0.449

5656

23656

\begin{align*} y^{\prime \prime \prime }-y&=12 \sinh \left (t \right ) \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= -1 \\ y^{\prime \prime }\left (0\right ) &= 7 \\ \end{align*}
Using Laplace transform method.

0.449

5657

615

\begin{align*} x_{1}^{\prime }&=4 x_{1}-3 x_{2} \\ x_{2}^{\prime }&=6 x_{1}-7 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 8 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

0.450

5658

1387

\begin{align*} y^{\prime \prime }+4 y^{\prime }+6 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.450

5659

4563

\begin{align*} x_{1}^{\prime }&=5 x_{1}+3 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}-x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= -2 \\ \end{align*}

0.450

5660

10508

\begin{align*} x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y&=0 \\ \end{align*}

0.450

5661

18036

\begin{align*} y^{2} {y^{\prime }}^{2}+y^{2}&=1 \\ \end{align*}

0.450

5662

19620

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.450

5663

23773

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.450

5664

1929

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.451

5665

4012

\begin{align*} x^{2} y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+5 y \,{\mathrm e}^{2 x}&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.451

5666

7179

\begin{align*} y^{\prime \prime } x +y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.451

5667

8162

\begin{align*} y^{\prime }+20 y&=24 \\ \end{align*}

0.451

5668

8190

\begin{align*} y^{\prime }&=y^{2}+2 y-3 \\ \end{align*}

0.451

5669

8473

\begin{align*} x^{\prime }&=-\lambda _{1} x \\ y^{\prime }&=\lambda _{1} x-\lambda _{2} y \\ \end{align*}

0.451

5670

9501

\begin{align*} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.451

5671

9561

\begin{align*} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.451

5672

10351

\begin{align*} y^{\prime } x +y&=\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

0.451

5673

14395

\begin{align*} x^{\prime }&=5 x-y \\ y^{\prime }&=3 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.451

5674

23665

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=13 t +17+40 \sin \left (t \right ) \\ y \left (0\right ) &= 30 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

0.451

5675

4649

\begin{align*} y^{\prime }&=f \left (x \right ) f^{\prime }\left (x \right )+y f^{\prime }\left (x \right ) \\ \end{align*}

0.452

5676

9377

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.452

5677

12151

\begin{align*} y^{\prime }&=\frac {2 x y^{2}+4 y \ln \left (2 x +1\right ) x +2 \ln \left (2 x +1\right )^{2} x +y^{2}-2+\ln \left (2 x +1\right )^{2}+2 y \ln \left (2 x +1\right )}{2 x +1} \\ \end{align*}

0.452

5678

12904

\begin{align*} 4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y&=0 \\ \end{align*}

0.452

5679

13984

\begin{align*} y+2 x y^{2}-x^{2} y^{3}+2 x^{2} y y^{\prime }&=0 \\ \end{align*}

0.452

5680

15464

\begin{align*} x^{\prime }&=x-5 y \\ y^{\prime }&=x-y \\ \end{align*}

0.452

5681

16051

\begin{align*} x^{\prime }&=z-y \\ y^{\prime }&=z-x \\ z^{\prime }&=z \\ \end{align*}

0.452

5682

21587

\begin{align*} 4 y+4 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime }&=\cos \left (2 x \right ) \\ \end{align*}

0.452

5683

1528

\begin{align*} y^{\prime }&=x \sin \left (x^{2}\right ) \\ y \left (\frac {\sqrt {2}\, \sqrt {\pi }}{2}\right ) &= 1 \\ \end{align*}

0.453

5684

7695

\begin{align*} y^{\prime } x&=x^{2}+2 x -3 \\ \end{align*}

0.453

5685

15242

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=3 \delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.453

5686

16832

\begin{align*} -2 y+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.453

5687

19025

\begin{align*} x_{1}^{\prime }&=5 x_{1}-x_{2} \\ x_{2}^{\prime }&=3 x_{1}+x_{2} \\ \end{align*}

0.453

5688

20931

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=-5 x \\ \end{align*}

0.453

5689

23693

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.453

5690

629

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

0.454

5691

1400

\begin{align*} x_{1}^{\prime }&=-\frac {x_{1}}{10}+\frac {3 x_{2}}{40} \\ x_{2}^{\prime }&=\frac {x_{1}}{10}-\frac {x_{2}}{5} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -17 \\ x_{2} \left (0\right ) &= -21 \\ \end{align*}

0.454

5692

1788

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y&=\left (x +1\right )^{3} {\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.454

5693

2161

\begin{align*} y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+24 y^{\prime \prime }+32 y^{\prime }&=-16 \,{\mathrm e}^{-2 x} \left (-x^{3}+x^{2}+x +1\right ) \\ \end{align*}

0.454

5694

2727

\begin{align*} x_{1}^{\prime }&=6 x_{1}-3 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

0.454

5695

3985

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.454

5696

4561

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=-4 x_{1}+x_{2} \\ \end{align*}

0.454

5697

5518

\begin{align*} \left (-x^{2}+1\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +4 x^{2}&=0 \\ \end{align*}

0.454

5698

9602

\begin{align*} -y+y^{\prime }&=2 \cos \left (5 t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.454

5699

10776

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}

0.454

5700

11668

\begin{align*} {y^{\prime }}^{2}+\left (x -2\right ) y^{\prime }-y+1&=0 \\ \end{align*}

0.454