| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 5701 |
\begin{align*}
2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.454 |
|
| 5702 |
\(\left [\begin {array}{ccc} -2 & 5 & 5 \\ -1 & 4 & 5 \\ 3 & -3 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.454 |
|
| 5703 |
\begin{align*}
\left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| 5704 |
\begin{align*}
-2 y+y^{\prime }&=t^{3} \\
y \left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| 5705 |
\begin{align*}
z^{\prime }+2 y^{\prime }+3 y&=0 \\
y^{\prime }+3 y-2 z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| 5706 |
\begin{align*}
w^{\prime }+y&=\sin \left (t \right ) \\
y^{\prime }-z&={\mathrm e}^{t} \\
w+y+z^{\prime }&=1 \\
\end{align*} With initial conditions \begin{align*}
w \left (0\right ) &= 0 \\
z \left (0\right ) &= 1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.454 |
|
| 5707 |
\begin{align*}
x^{\prime }-x-y&=0 \\
5 x+y^{\prime }-3 y&=0 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| 5708 |
\begin{align*}
x^{\prime }+x-5 y&=0 \\
y^{\prime }+4 x+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| 5709 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}+17 x_{2}+4 x_{3} \\
x_{2}^{\prime }&=-x_{1}+6 x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{2}+2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| 5710 |
\begin{align*}
y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| 5711 |
\begin{align*}
2 y_{1}^{\prime }&=y_{1}+y_{2} \\
2 y_{2}^{\prime }&=5 y_{2}-3 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 3 \\
y_{2} \left (0\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| 5712 |
\begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1+\frac {1}{x^{2}}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| 5713 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.455 |
|
| 5714 |
\begin{align*}
y_{1}^{\prime }&=y_{1}-2 y_{2} \\
y_{2}^{\prime }&=y_{1}+3 y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| 5715 |
\begin{align*}
x^{\prime }&=-4 x+y \\
y^{\prime }&=2 x-3 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| 5716 |
\begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| 5717 |
\begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=2 x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| 5718 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| 5719 |
\begin{align*}
y^{\prime \prime }+9 y&=7 \sin \left (4 t \right )+14 \cos \left (4 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5720 |
\begin{align*}
y^{\prime }+y^{2}&=x^{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.456 |
|
| 5721 |
\begin{align*}
x^{\prime }-x+y&=2 \sin \left (t \right ) \left (1-\operatorname {Heaviside}\left (t -\pi \right )\right ) \\
2 x-y^{\prime }-y&=0 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5722 |
\begin{align*}
\left (x^{3} y^{3}+y^{2} x^{2}+y x +1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-y x +1\right ) x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5723 |
\begin{align*}
y^{\prime \prime }-4 y&=t^{3} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5724 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime }&=\sec \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5725 |
\begin{align*}
x^{\prime }&=\frac {3 x}{4}-2 y \\
y^{\prime }&=x-\frac {5 y}{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5726 |
\begin{align*}
x_{1}^{\prime }&=\frac {x_{1}}{2}+\frac {x_{2}}{2} \\
x_{2}^{\prime }&=2 x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5727 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5728 |
\begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=2 x+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5729 |
\begin{align*}
x^{\prime }&=-3 x+2 y \\
y^{\prime }&=-2 x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5730 |
\begin{align*}
y^{\prime }&=-{\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| 5731 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x +2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| 5732 |
\begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{2}-\frac {x_{2}}{8} \\
x_{2}^{\prime }&=2 x_{1}-\frac {x_{2}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| 5733 |
\begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-y^{\prime } t +\alpha ^{2} y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| 5734 |
\begin{align*}
x_{1}^{\prime }&=4 x_{2} \\
x_{2}^{\prime }&=-9 x_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| 5735 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| 5736 |
\begin{align*}
\left (x^{2}-25\right ) y^{\prime \prime }+2 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| 5737 |
\begin{align*}
-y+y^{\prime }&=1 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| 5738 |
\begin{align*}
x^{\prime }&=x-5 y \\
y^{\prime }&=x-3 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| 5739 |
\begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=5 x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| 5740 |
\begin{align*}
2 x^{2} y y^{\prime \prime }+y^{2}&=x^{2} {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.457 |
|
| 5741 |
\begin{align*}
2 x^{\prime }-3 y^{\prime }&=2 \,{\mathrm e}^{2 t} \\
x^{\prime }-2 y^{\prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| 5742 |
\begin{align*}
\left (2 x -1\right ) y^{\prime \prime }-3 y^{\prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.457 |
|
| 5743 |
\begin{align*}
y^{\prime }&=\frac {1}{\sqrt {2+x}} \\
y \left (2\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| 5744 |
\begin{align*}
x_{1}^{\prime }&=5 x_{1}-9 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| 5745 |
\begin{align*}
x_{1}^{\prime }&=x_{3} \\
x_{2}^{\prime }&=-5 x_{1}-x_{2}-5 x_{3} \\
x_{3}^{\prime }&=4 x_{1}+x_{2}-2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| 5746 |
\begin{align*}
y^{\prime }&=\frac {1}{x^{{2}/{3}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| 5747 |
\begin{align*}
\left (-y+a x y^{\prime }\right )^{2}+y^{\prime \prime } x&=b \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.458 |
|
| 5748 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| 5749 |
\(\left [\begin {array}{ccc} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & -6 & 6 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.458 |
|
| 5750 |
\begin{align*}
y^{\prime }+\cos \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| 5751 |
\begin{align*}
x_{1}^{\prime }&=5 x_{1}-x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+3 x_{2} \\
x_{3}^{\prime }&=-3 x_{1}+2 x_{2}+x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| 5752 |
\begin{align*}
y^{\prime \prime } x +y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| 5753 |
\begin{align*}
\left (8 x^{2}+1\right ) y^{\prime \prime }+2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| 5754 |
\begin{align*}
x {y^{\prime }}^{5}-y {y^{\prime }}^{4}+\left (x^{2}+1\right ) {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.459 |
|
| 5755 |
\begin{align*}
x^{\prime }&=2 x+4 y \\
y^{\prime }&=-x+6 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -1 \\
y \left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| 5756 |
\begin{align*}
y^{\prime \prime } x +a \left (-y+y^{\prime } x \right )^{2}-b&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.459 |
|
| 5757 |
\begin{align*}
n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| 5758 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 y^{\prime } x +80 y&=\frac {1}{x^{13}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| 5759 |
\begin{align*}
\left (x^{2}+x \right ) y^{\prime }+2 x +1+2 \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| 5760 |
\begin{align*}
t y^{\prime \prime }+2 y^{\prime }+9 t y&=0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| 5761 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| 5762 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }+12 y&=8 \cos \left (2 x \right )-16 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| 5763 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2} \\
x_{2}^{\prime }&=-4 x_{1}+3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| 5764 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=x^{3}+\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| 5765 |
\begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| 5766 |
\begin{align*}
y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.460 |
|
| 5767 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=9 x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| 5768 |
\begin{align*}
x^{\prime }&=-3 x+2 y \\
y^{\prime }&=-2 x-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| 5769 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&={\mathrm e}^{t}+{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| 5770 |
\begin{align*}
x_{1}^{\prime }&=7 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| 5771 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=4 x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| 5772 |
\begin{align*}
x_{1}^{\prime }&=10 x_{1}-8 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| 5773 |
\begin{align*}
9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.461 |
|
| 5774 |
\begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| 5775 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=\sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| 5776 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (2 x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| 5777 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime } x +\left (2 x^{2}+4\right ) y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| 5778 |
\begin{align*}
x^{\prime }&=6 x-3 y \\
y^{\prime }&=2 x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| 5779 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| 5780 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=1+t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| 5781 |
\begin{align*}
2 {y^{\prime }}^{2}+\left (x -1\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| 5782 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=-2\). |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| 5783 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=\cosh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| 5784 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| 5785 |
\begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=-x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| 5786 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x +3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| 5787 |
\begin{align*}
t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| 5788 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-3 x_{2} \\
x_{2}^{\prime }&=-2 x_{1}+2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| 5789 |
\begin{align*}
4 \left (1-y\right ) y y^{\prime \prime }&=3 \left (1-2 y\right ) {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.463 |
|
| 5790 |
\begin{align*}
\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.463 |
|
| 5791 |
\begin{align*}
y^{\prime \prime \prime } \sin \left (x \right )+\left (2 \cos \left (x \right )+1\right ) y^{\prime \prime }-\sin \left (x \right ) y^{\prime }-\cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.463 |
|
| 5792 |
\begin{align*}
y y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.463 |
|
| 5793 |
\begin{align*}
x^{\prime }&=-3 x+y \\
y^{\prime }&=-x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| 5794 |
\begin{align*}
x^{\prime }&=2 y \\
y^{\prime }&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| 5795 |
\begin{align*}
y^{\prime }&=4 x^{3}-x +2 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| 5796 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2} \\
x_{2}^{\prime }&=3 x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| 5797 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| 5798 |
\begin{align*}
x^{\prime }+3 x+2 y&=0 \\
3 x+y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| 5799 |
\begin{align*}
\left (1-x \right )^{2} x^{2} y^{\prime \prime }-x \left (-3 x^{2}+2 x +1\right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| 5800 |
\begin{align*}
t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.464 |
|