| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 7301 |
\begin{align*}
y^{\prime \prime }+\frac {\left (1-x \right ) y^{\prime }}{2 x}-\frac {y}{4 x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| 7302 |
\begin{align*}
y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| 7303 |
\begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (2+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.643 |
|
| 7304 |
\begin{align*}
3 x^{2} y^{\prime \prime }-x \left (8+x \right ) y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| 7305 |
\begin{align*}
\left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.643 |
|
| 7306 |
\begin{align*}
x^{\prime }&=2 x+\operatorname {Heaviside}\left (t -1\right ) \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| 7307 |
\begin{align*}
y^{\prime }+3 y+2 z&=0 \\
z^{\prime }+2 y-4 z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| 7308 |
\begin{align*}
y^{\prime \prime } y^{\prime \prime \prime }&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.643 |
|
| 7309 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+\left (-x^{2}+1\right ) y&=\frac {-x^{2}+x}{x +1} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.643 |
|
| 7310 |
\begin{align*}
2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7311 |
\begin{align*}
x^{\prime }&=3 x+2 y+4 z \\
y^{\prime }&=2 x+2 z \\
z^{\prime }&=4 x+2 y+3 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7312 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7313 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7314 |
\begin{align*}
\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7315 |
\begin{align*}
2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.644 |
|
| 7316 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7317 |
\begin{align*}
y^{\prime }&={\mathrm e}^{\mu x} \left (y-b \,{\mathrm e}^{\lambda x}\right )^{2}+b \lambda \,{\mathrm e}^{\lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.644 |
|
| 7318 |
\begin{align*}
y^{\prime }&=3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7319 |
\begin{align*}
x^{\prime }&=2 x-y+z \\
y^{\prime }&=x+2 y-z \\
z^{\prime }&=x-y+2 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7320 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7321 |
\begin{align*}
y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=f \left (t \right ) \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7322 |
\begin{align*}
y^{\prime }+4 y&=\delta \left (t -3\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| 7323 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+2 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-5 x_{1}-4 x_{2}-2 x_{3} \\
x_{3}^{\prime }&=5 x_{1}+5 x_{2}+3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7324 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2}+x_{3} \\
x_{2}^{\prime }&=4 x_{1}+3 x_{2}+x_{4} \\
x_{3}^{\prime }&=3 x_{3}-4 x_{4} \\
x_{4}^{\prime }&=4 x_{3}+3 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7325 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2}+{\mathrm e}^{t} \\
x_{2}^{\prime }&=x_{1}-x_{2}+{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7326 |
\begin{align*}
2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7327 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2}+{\mathrm e}^{t} \\
x_{2}^{\prime }&=4 x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7328 |
\begin{align*}
t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7329 |
\begin{align*}
\left (2+4 x \right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.645 |
|
| 7330 |
\begin{align*}
3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7331 |
\begin{align*}
x^{\prime }&=-3 x+6 y \\
y^{\prime }&=4 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7332 |
\begin{align*}
y^{\prime }&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7333 |
\begin{align*}
x^{\prime }+4 x+3 y&=t \\
y^{\prime }+2 x+5 y&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7334 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7335 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (-1\right ) &= {\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7336 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{16}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| 7337 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= v \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| 7338 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+x_{2} \\
x_{2}^{\prime }&=-x_{1}+5 x_{2} \\
x_{3}^{\prime }&=4 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| 7339 |
\begin{align*}
2 y y^{\prime \prime }&={y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.646 |
|
| 7340 |
\begin{align*}
x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| 7341 |
\begin{align*}
x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| 7342 |
\begin{align*}
x^{\prime }&=-y+\sin \left (t \right ) \\
y^{\prime }&=x+\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| 7343 |
\begin{align*}
y^{2} \left (x^{2} y^{\prime \prime }-y^{\prime } x +y\right )&=x^{3} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.646 |
|
| 7344 |
\begin{align*}
x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+y^{\prime } x +y&=\ln \left (x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.646 |
|
| 7345 |
\begin{align*}
y^{\prime }&=-\frac {8 x +5}{3 y^{2}+1} \\
y \left (-1\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.647 |
|
| 7346 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime }&=\sec \left (2 t \right ) \tan \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| 7347 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+2 x_{2}+4 x_{3} \\
x_{2}^{\prime }&=2 x_{1}+2 x_{3} \\
x_{3}^{\prime }&=4 x_{1}+2 x_{2}+3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| 7348 |
\begin{align*}
2 y^{\prime \prime } x +\left (-2 x^{2}+1\right ) y^{\prime }-4 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7349 |
\begin{align*}
\left (x^{2}+4 x +3\right ) y^{\prime \prime }-\left (-x^{2}+4 x +5\right ) y^{\prime }-\left (2+x \right ) y&=0 \\
y \left (-2\right ) &= 2 \\
y^{\prime }\left (-2\right ) &= -1 \\
\end{align*} Series expansion around \(x=-2\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7350 |
\begin{align*}
\left (2 x^{2}-11 x +16\right ) y^{\prime \prime }+\left (x^{2}-6 x +10\right ) y^{\prime }-\left (-x +2\right ) y&=0 \\
y \left (3\right ) &= 1 \\
y^{\prime }\left (3\right ) &= -2 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7351 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7352 |
\begin{align*}
4 {y^{\prime }}^{2}&=9 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7353 |
\begin{align*}
y^{2} {y^{\prime }}^{2}&=a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7354 |
\begin{align*}
y^{\prime \prime }+\left ({\mathrm e}^{x}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7355 |
\begin{align*}
y^{\prime } t +y&=0 \\
y \left (1\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7356 |
\begin{align*}
\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.648 |
|
| 7357 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.648 |
|
| 7358 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (2+x \right ) y^{\prime }-\left (2-3 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.648 |
|
| 7359 |
\begin{align*}
y^{\prime \prime }-\frac {1}{\left (a y^{2}+b x y+c \,x^{2}+\alpha y+\beta x +\gamma \right )^{{3}/{2}}}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.648 |
|
| 7360 |
\begin{align*}
\left (2+x \right ) y^{\prime }+y&=\left \{\begin {array}{cc} 2 x & 0\le x \le 2 \\ 4 & 2<x \end {array}\right . \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.648 |
|
| 7361 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7362 |
\begin{align*}
x^{\prime }&=3 x-y \\
y^{\prime }&=x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7363 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7364 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7365 |
\begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=6 x_{1}+4 \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7366 |
\begin{align*}
n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7367 |
\begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7368 |
\begin{align*}
t^{2} y^{\prime \prime }+3 t \left (1+3 t \right ) y^{\prime }+\left (-t^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 7369 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 7370 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 7371 |
\begin{align*}
9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (36 x^{4}-16\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 7372 |
\begin{align*}
{y^{\prime }}^{2}&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 7373 |
\begin{align*}
8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.649 |
|
| 7374 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.649 |
|
| 7375 |
\begin{align*}
3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (1+3 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.649 |
|
| 7376 |
\begin{align*}
x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 7377 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.650 |
|
| 7378 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.650 |
|
| 7379 |
\begin{align*}
x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (3 x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.650 |
|
| 7380 |
\(\left [\begin {array}{cccc} 1 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.650 |
|
| 7381 |
\(\left [\begin {array}{cccc} 4 & 0 & 0 & -3 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 6 & 0 & 0 & -5 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.650 |
|
| 7382 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1} \\
x_{2}^{\prime }&=1 \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 7383 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{2} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.650 |
|
| 7384 |
\begin{align*}
\left (a +x \right ) y^{\prime }&=b x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 7385 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}+x_{3} \\
x_{2}^{\prime }&=6 x_{1}-x_{2} \\
x_{3}^{\prime }&=-x_{1}-2 x_{2}-x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
x_{3} \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 7386 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=2 x_{1}+7 x_{2}+x_{3} \\
x_{3}^{\prime }&=2 x_{1}+x_{2}+7 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 7387 |
\begin{align*}
2 \left (1-y\right ) y y^{\prime \prime }&=4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.651 |
|
| 7388 |
\begin{align*}
2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.651 |
|
| 7389 |
\begin{align*}
z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 7390 |
\begin{align*}
\left (c +2 b x +a \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }+d y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.651 |
|
| 7391 |
\begin{align*}
y^{\prime }&=\frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \\
y \left (\frac {2}{\pi }\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 7392 |
\begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 7393 |
\begin{align*}
\left (x^{2}-2 x \right ) \left (1+{y^{\prime }}^{2}\right )+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 7394 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 7395 |
\begin{align*}
x_{1}^{\prime }&=5 x_{1}+x_{2}+3 x_{3} \\
x_{2}^{\prime }&=x_{1}+7 x_{2}+x_{3} \\
x_{3}^{\prime }&=3 x_{1}+x_{2}+5 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 7396 |
\begin{align*}
x^{\prime }&=3 x-y-z \\
y^{\prime }&=x+y-z \\
z^{\prime }&=x-y+z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 7397 |
\begin{align*}
\left (x^{2}-9\right ) y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 7398 |
\begin{align*}
2 y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 7399 |
\begin{align*}
2 t^{2} y^{\prime \prime }-y^{\prime } t +\left (1-t \right ) y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 7400 |
\begin{align*}
\left (2 x^{2}+1\right ) y^{\prime \prime }+\left (2-3 x \right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.653 |
|