2.3.90 Problems 8901 to 9000

Table 2.711: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

8901

1969

\begin{align*} x^{2} \left (2+x \right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.902

8902

10215

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.902

8903

11033

\begin{align*} 9 x^{2} y^{\prime \prime }+3 x \left (-x^{2}+1\right ) y^{\prime }+\left (7 x^{2}+1\right ) y&=0 \\ \end{align*}

0.902

8904

18414

\begin{align*} 4 x^{\prime }-y^{\prime }+3 x&=\sin \left (t \right ) \\ x^{\prime }+y&=\cos \left (t \right ) \\ \end{align*}

0.902

8905

21053

\begin{align*} x^{\prime }&=\frac {-x+x^{2}}{2 x-1} \\ x \left (0\right ) &= 2 \\ \end{align*}

0.902

8906

887

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.903

8907

2443

\begin{align*} \left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.903

8908

3367

\begin{align*} 2 x^{2} y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime }-\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.903

8909

6499

\begin{align*} 2 y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

0.903

8910

10267

\begin{align*} y^{\prime }&=y \\ \end{align*}

0.903

8911

10958

\begin{align*} y^{\prime \prime }-3 y^{\prime } x +\left (2 x^{2}+5\right ) y&=0 \\ \end{align*}

0.903

8912

16868

\begin{align*} y^{\prime \prime }-{\mathrm e}^{x} y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.903

8913

18257

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

0.903

8914

22044

\begin{align*} x^{2}+y+y^{2}-y^{\prime } x&=0 \\ \end{align*}

0.903

8915

9141

\begin{align*} 1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime }&=0 \\ \end{align*}

0.904

8916

10544

\begin{align*} 12 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y&=0 \\ \end{align*}

0.904

8917

20528

\begin{align*} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y&=0 \\ \end{align*}

0.904

8918

1970

\begin{align*} x^{2} \left (6+x \right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }+\left (2 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.905

8919

8993

\begin{align*} 3 x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.905

8920

10186

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2}+\cos \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

0.905

8921

12992

\begin{align*} 8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2}&=0 \\ \end{align*}

0.905

8922

16899

\begin{align*} \left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 y^{\prime } x +10 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.905

8923

20906

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{2 x}-\frac {\left (x +1\right ) y}{2 x^{2}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.905

8924

22991

\begin{align*} n^{\prime }&=k n-b t \\ n \left (0\right ) &= n_{0} \\ \end{align*}

0.905

8925

25446

\begin{align*} z^{\prime }+4 i z&={\mathrm e}^{8 i t} \\ \end{align*}

0.905

8926

9428

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.906

8927

16249

\begin{align*} y^{\prime }-2 y&=-10 \\ y \left (0\right ) &= 8 \\ \end{align*}

0.906

8928

24769

\begin{align*} y^{\prime }+y-v^{\prime }-v&=0 \\ y^{\prime }+v^{\prime }-v&={\mathrm e}^{x} \\ \end{align*}

0.906

8929

1943

\begin{align*} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (2 x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.907

8930

9826

\begin{align*} {y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

0.907

8931

18924

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (t \right )-\sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.907

8932

23722

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.907

8933

2080

\begin{align*} 4 x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (4-x \right ) y^{\prime }-\left (7+5 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.908

8934

2081

\begin{align*} 3 \left (x +3\right ) x^{2} y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.908

8935

12921

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime }&=0 \\ \end{align*}

0.908

8936

14924

\begin{align*} 2 z^{\prime \prime }+7 z^{\prime }-4 z&=0 \\ z \left (0\right ) &= 0 \\ z^{\prime }\left (0\right ) &= 9 \\ \end{align*}

0.908

8937

14985

\begin{align*} x^{\prime }&=x-4 y+\cos \left (2 t \right ) \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.908

8938

6891

\begin{align*} y y^{\prime }&=x +y^{2}-y^{2} {y^{\prime }}^{2} \\ \end{align*}

0.909

8939

8996

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (x^{2}+5 x \right ) y^{\prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.909

8940

18009

\begin{align*} y&=y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \\ \end{align*}

0.909

8941

21903

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (1+3 x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.909

8942

24434

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.910

8943

5235

\begin{align*} \left (2 x^{2}+4 y x -y^{2}\right ) y^{\prime }&=x^{2}-4 y x -2 y^{2} \\ \end{align*}

0.911

8944

7093

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

0.911

8945

9537

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+5 \left (x +1\right ) y^{\prime }+\left (x^{2}-x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.911

8946

10847

\begin{align*} y^{\prime \prime }&=\left (x^{2}+3\right ) y \\ \end{align*}

0.911

8947

11104

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\ \end{align*}

0.911

8948

18942

\begin{align*} y^{\prime \prime }+4 y&=\delta \left (t -4 \pi \right ) \\ y \left (0\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.911

8949

19393

\begin{align*} \left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime }&=2 y x -{\mathrm e}^{y}-x \\ \end{align*}

0.911

8950

4570

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}+26 \sin \left (t \right ) \\ x_{2}^{\prime }&=3 x_{1}+4 x_{2} \\ \end{align*}

0.912

8951

10260

\begin{align*} y^{\prime }&=a \\ \end{align*}

0.912

8952

6471

\begin{align*} 2 y y^{\prime \prime }&=4 y^{2}+8 y^{3}+{y^{\prime }}^{2} \\ \end{align*}

0.913

8953

9518

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.913

8954

12736

\begin{align*} \left (x -2\right ) x y^{\prime \prime \prime }-x \left (x -2\right ) y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ \end{align*}

0.913

8955

20385

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1&=0 \\ \end{align*}

0.913

8956

22928

\begin{align*} 2 x^{\prime }-x+7 y^{\prime }+3 y&=90 \sin \left (2 t \right ) \\ x^{\prime }-5 x+8 y^{\prime }-3 y&=0 \\ \end{align*}

0.913

8957

3820

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}+5 \,{\mathrm e}^{4 t} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

0.914

8958

11019

\begin{align*} x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}

0.914

8959

12294

\begin{align*} y^{\prime \prime }-c \,x^{a} y&=0 \\ \end{align*}

0.914

8960

14075

\begin{align*} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )&=y^{2} \\ \end{align*}

0.914

8961

5626

\begin{align*} {y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5}&=0 \\ \end{align*}

0.915

8962

13274

\begin{align*} x^{n +1} y^{\prime }&=x^{2 n} a y^{2}+b \,x^{n} y+c \,x^{m}+d \\ \end{align*}

0.915

8963

15285

\begin{align*} x^{\prime }&=-2 x-2 y+4 z \\ y^{\prime }&=-2 x+y+2 z \\ z^{\prime }&=-4 x-2 y+6 z+{\mathrm e}^{2 t} \\ \end{align*}

0.915

8964

2181

\begin{align*} y^{\prime \prime \prime }-7 y^{\prime \prime }+20 y^{\prime }-24 y&=-{\mathrm e}^{2 x} \left (\left (13-8 x \right ) \cos \left (2 x \right )-\left (8-4 x \right ) \sin \left (2 x \right )\right ) \\ \end{align*}

0.916

8965

3382

\begin{align*} \left (1-x \right ) x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.916

8966

6494

\begin{align*} a \left (2+a \right )^{2} y y^{\prime \prime }&=-a^{2} f \left (x \right )^{2} y^{4}+a^{2} \left (2+a \right ) y^{3} f^{\prime }\left (x \right )+a \left (2+a \right )^{2} f \left (x \right ) y^{2} y^{\prime }+\left (-1+a \right ) \left (2+a \right )^{2} {y^{\prime }}^{2} \\ \end{align*}

0.916

8967

9412

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.916

8968

10862

\begin{align*} 3 y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

0.916

8969

15847

\begin{align*} y^{\prime }&=2 y^{3}+t^{2} \\ y \left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}

0.916

8970

23736

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {2}{3}-3 x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.917

8971

899

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right )^{2} \\ \end{align*}

0.918

8972

8894

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.918

8973

11066

\begin{align*} x^{2} y^{\prime \prime }+x \left (-3 x^{2}+1\right ) y^{\prime }-4 \left (-3 x^{2}+1\right ) y&=0 \\ \end{align*}

0.918

8974

14157

\begin{align*} \left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2}&={y^{\prime \prime \prime }}^{2}+1 \\ \end{align*}

0.918

8975

17690

\begin{align*} \left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.918

8976

18853

\begin{align*} y^{\prime \prime }+y&=3 \cos \left (w t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.918

8977

157

\begin{align*} y^{\prime \prime }&=2 y y^{\prime } \\ \end{align*}

0.919

8978

1993

\begin{align*} 9 x^{2} \left (x +5\right ) y^{\prime \prime }+9 x \left (5+9 x \right ) y^{\prime }-\left (5-8 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.919

8979

10343

\begin{align*} \left (a t +1\right ) y^{\prime }+y&=t \\ y \left (1\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.919

8980

5445

\begin{align*} 5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\ \end{align*}

0.920

8981

10608

\begin{align*} x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}

0.920

8982

11293

\begin{align*} y^{\prime \prime }&=\left (\frac {x^{2}}{4}-\frac {11}{2}\right ) y \\ \end{align*}

0.920

8983

15117

\begin{align*} y^{\prime }&=\sin \left (y x \right ) \\ \end{align*}

0.920

8984

17603

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\tan \left (t \right )^{2} \\ \end{align*}

0.920

8985

20715

\begin{align*} \left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

0.920

8986

24748

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

0.920

8987

3349

\begin{align*} y^{\prime \prime }&=\cos \left (y x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}
Series expansion around \(x=\frac {\pi }{2}\).

0.921

8988

4512

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} \\ \end{align*}

0.921

8989

10773

\begin{align*} 2 y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

0.921

8990

3352

\begin{align*} x^{2} \left (x +4\right ) y^{\prime \prime }+7 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.922

8991

7896

\begin{align*} x -x^{2}-y^{2}+y y^{\prime }&=0 \\ \end{align*}

0.922

8992

11808

\begin{align*} {y^{\prime }}^{3}-\left (x +5\right ) y^{\prime }+y&=0 \\ \end{align*}

0.922

8993

15232

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=39 \operatorname {Heaviside}\left (t \right )-507 \left (-2+t \right ) \operatorname {Heaviside}\left (-2+t \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.922

8994

15279

\begin{align*} x^{\prime }&=-4 x+9 y+12 \,{\mathrm e}^{-t} \\ y^{\prime }&=-5 x+2 y \\ \end{align*}

0.922

8995

17589

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&=\tan \left (2 t \right ) \\ \end{align*}

0.922

8996

18120

\begin{align*} y^{3} y^{\prime \prime }&=-1 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

0.922

8997

23749

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.922

8998

25336

\begin{align*} y^{\prime \prime }+3 t \left (1-t \right ) y^{\prime }+\frac {\left (1-{\mathrm e}^{t}\right ) y}{t}&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.923

8999

1262

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.924

9000

5561

\begin{align*} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1&=0 \\ \end{align*}

0.924