| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 10601 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\
y \left (8\right ) &= -4 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.406 |
|
| 10602 |
\begin{align*}
x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.407 |
|
| 10603 |
\begin{align*}
y^{\prime }-\frac {1}{\sqrt {\operatorname {a4} \,x^{4}+\operatorname {a3} \,x^{3}+\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.407 |
|
| 10604 |
\begin{align*}
y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.407 |
|
| 10605 |
\begin{align*}
2 \left (1-y\right ) y y^{\prime \prime }&=-\left (1-y\right )^{3} \left (\operatorname {F0} \left (x \right )^{2}-\operatorname {G0} \left (x \right )^{2} y^{2}\right )-4 \left (1-y\right ) y^{2} \left (f \left (x \right )^{2}-g \left (x \right )^{2}+f^{\prime }\left (x \right )+g^{\prime }\left (x \right )\right )-4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.408 |
|
| 10606 |
\begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.408 |
|
| 10607 |
\begin{align*}
y^{\prime }&=t^{2} y+4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.408 |
|
| 10608 |
\begin{align*}
b \,{\mathrm e}^{x k} y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.410 |
|
| 10609 |
\begin{align*}
y^{\prime \prime }&=\frac {\left (3 \sin \left (x \right )^{2}+1\right ) y^{\prime }}{\cos \left (x \right ) \sin \left (x \right )}+\frac {\sin \left (x \right )^{2} y}{\cos \left (x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.411 |
|
| 10610 |
\begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & t =0 \\ \sin \left (\frac {1}{t}\right ) & \operatorname {otherwise} \end {array}\right . \\
\end{align*} Using Laplace transform method. |
✓ |
✗ |
✓ |
✓ |
1.411 |
|
| 10611 |
\begin{align*}
-y+y^{\prime }&=2 \,{\mathrm e}^{2 t} t \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.412 |
|
| 10612 |
\begin{align*}
y^{\prime }&=1+\left (y x +3 y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.412 |
|
| 10613 |
\begin{align*}
x^{\prime \prime }+4 x^{3}&=0 \\
x \left (0\right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.412 |
|
| 10614 |
\begin{align*}
-a b y+\left (c -\left (a +b +1\right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.412 |
|
| 10615 |
\begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.412 |
|
| 10616 |
\begin{align*}
y^{2} y^{\prime }&=x \left (1+y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.413 |
|
| 10617 |
\begin{align*}
\left (x -y^{2}\right ) y^{\prime }&=x^{2}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.413 |
|
| 10618 |
\begin{align*}
y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.413 |
|
| 10619 |
\begin{align*}
y^{\prime }+6 y x&=0 \\
y \left (\pi \right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.413 |
|
| 10620 |
\begin{align*}
\left (\beta \,x^{2}+x \alpha +1\right ) y^{\prime \prime }+\left (\delta x +\gamma \right ) y^{\prime }+\epsilon y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.414 |
|
| 10621 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (9-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.414 |
|
| 10622 |
\begin{align*}
y^{\prime }&=2 y+{\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.414 |
|
| 10623 |
\begin{align*}
{y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right )&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.414 |
|
| 10624 |
\begin{align*}
x^{2} y^{\prime \prime }&=6 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.414 |
|
| 10625 |
\begin{align*}
y^{\prime }&=-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.414 |
|
| 10626 |
\begin{align*}
y^{\prime }&=2 y x +1 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.414 |
|
| 10627 |
\begin{align*}
x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }-x \left (x^{2}+3\right ) y^{\prime }-2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.415 |
|
| 10628 |
\begin{align*}
y^{\prime \prime }-y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.415 |
|
| 10629 |
\begin{align*}
y^{\prime }+4 y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.415 |
|
| 10630 |
\begin{align*}
x^{2} y^{\prime \prime }&=\sqrt {m \,x^{2} {y^{\prime }}^{3}+n y^{2}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.415 |
|
| 10631 |
\begin{align*}
x^{\prime }+\ln \left (3\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.415 |
|
| 10632 |
\begin{align*}
y^{\prime } x&=x^{3}+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.415 |
|
| 10633 |
\begin{align*}
{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.415 |
|
| 10634 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.416 |
|
| 10635 |
\begin{align*}
4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.416 |
|
| 10636 |
\begin{align*}
2 y^{\prime \prime } x +\left (2 x +1\right ) y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.416 |
|
| 10637 |
\begin{align*}
4 {y^{\prime }}^{2}-9 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.416 |
|
| 10638 |
\begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.417 |
|
| 10639 |
\begin{align*}
2 y^{\prime } x +y&=10 \sqrt {x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.418 |
|
| 10640 |
\begin{align*}
y^{\prime } x +\left (2 x -3\right ) y&=4 x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.420 |
|
| 10641 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.420 |
|
| 10642 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✓ |
1.420 |
|
| 10643 |
\begin{align*}
x \left (y x +1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 y x +2\right ) y^{\prime }+y^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.420 |
|
| 10644 |
\begin{align*}
\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.420 |
|
| 10645 |
\begin{align*}
y y^{\prime \prime }+4 {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.421 |
|
| 10646 |
\begin{align*}
16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.421 |
|
| 10647 |
\begin{align*}
x^{4} \left (y^{\prime }-y^{2}\right )&=a +b \,{\mathrm e}^{\frac {k}{x}}+c \,{\mathrm e}^{\frac {2 k}{x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.421 |
|
| 10648 |
\begin{align*}
y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.421 |
|
| 10649 |
\begin{align*}
y^{\prime }&=1+\left (t -y\right )^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.421 |
|
| 10650 |
\begin{align*}
y^{\prime }&=x \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.423 |
|
| 10651 |
\begin{align*}
y^{\prime }&=\frac {2 t}{y+t^{2} y} \\
y \left (2\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.424 |
|
| 10652 |
\begin{align*}
x^{\prime }&=2 t^{3} x-6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.424 |
|
| 10653 |
\begin{align*}
y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.424 |
|
| 10654 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{x} \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.425 |
|
| 10655 |
\begin{align*}
2 y y^{\prime }&=y^{2}+t -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.425 |
|
| 10656 |
\begin{align*}
x^{\prime }-x-y^{\prime }&=0 \\
y^{\prime }+3 x-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.427 |
|
| 10657 |
\begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right )^{3} \cot \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.427 |
|
| 10658 |
\begin{align*}
y^{\prime }-3 y&=\left \{\begin {array}{cc} 0 & 0\le t <2 \\ 2 & 2\le t <3 \\ 0 & 3\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.427 |
|
| 10659 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (a \right ) &= b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.428 |
|
| 10660 |
\begin{align*}
y^{\prime }&=\sin \left (x -y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.428 |
|
| 10661 |
\begin{align*}
y^{\prime \prime }&=1+3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.428 |
|
| 10662 |
\begin{align*}
2 y y^{\prime \prime }-6 {y^{\prime }}^{2}+y^{2} \left (1+a y^{3}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.428 |
|
| 10663 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y^{2}-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.428 |
|
| 10664 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.428 |
|
| 10665 |
\begin{align*}
x^{2} {y^{\prime }}^{3}+y \left (x^{2} y+1\right ) {y^{\prime }}^{2}+y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.429 |
|
| 10666 |
\begin{align*}
i^{\prime }+i&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.429 |
|
| 10667 |
\begin{align*}
-\left (1-x \right ) y-y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.430 |
|
| 10668 |
\begin{align*}
x^{2} \left (2 x +1\right ) y^{\prime \prime }-x \left (9+8 x \right ) y^{\prime }-12 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.431 |
|
| 10669 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2}-x_{3}+4 \,{\mathrm e}^{t} \\
x_{2}^{\prime }&=x_{1}+x_{2} \\
x_{3}^{\prime }&=3 x_{1}+x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.431 |
|
| 10670 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.431 |
|
| 10671 |
\begin{align*}
x^{\prime \prime }-x^{3}&=0 \\
x \left (0\right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.431 |
|
| 10672 |
\begin{align*}
y^{\prime \prime } x -3 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.431 |
|
| 10673 |
\begin{align*}
-y+y^{\prime }&={\mathrm e}^{2 t} t \\
y \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.431 |
|
| 10674 |
\begin{align*}
3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (1+3 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.433 |
|
| 10675 |
\begin{align*}
1-2 y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.433 |
|
| 10676 |
\begin{align*}
4 y^{2} {y^{\prime }}^{2} x^{2}&=\left (x^{2}+y^{2}\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.434 |
|
| 10677 |
\begin{align*}
x^{\prime \prime }&=x-x^{3} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.434 |
|
| 10678 |
\begin{align*}
y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.434 |
|
| 10679 |
\begin{align*}
-2 y+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.435 |
|
| 10680 |
\begin{align*}
y^{\prime }&=x^{2}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.436 |
|
| 10681 |
\begin{align*}
2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.436 |
|
| 10682 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=10 \sin \left (t \right )+10 \delta \left (t -1\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.436 |
|
| 10683 |
\begin{align*}
v^{\prime }&=2 V \left (t \right )-2 v \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.436 |
|
| 10684 |
\begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.436 |
|
| 10685 |
\begin{align*}
y^{\prime \prime } x +4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.436 |
|
| 10686 |
\begin{align*}
T^{\prime }&=k \left (T-T_{m} \right ) \\
T \left (0\right ) &= T_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.437 |
|
| 10687 |
\begin{align*}
y^{\prime }-a \left (t \right ) y&=q \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.437 |
|
| 10688 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-2 x_{2}+x_{3}+t \\
x_{2}^{\prime }&=x_{1}-4 x_{2}+x_{3} \\
x_{3}^{\prime }&=2 x_{1}+2 x_{2}-3 x_{3}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.438 |
|
| 10689 |
\begin{align*}
\left (2+x \right ) y^{\prime }+y&=\left \{\begin {array}{cc} 2 x & 0\le x <2 \\ 4 & 2\le x \end {array}\right . \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.438 |
|
| 10690 |
\begin{align*}
y^{\prime }&=\frac {x y^{2}-y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.438 |
|
| 10691 |
\begin{align*}
y+3 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.439 |
|
| 10692 |
\begin{align*}
2 y^{\prime }+2 \csc \left (x \right )^{2}&=y \csc \left (x \right ) \sec \left (x \right )-y^{2} \sec \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.440 |
|
| 10693 |
\begin{align*}
{y^{\prime }}^{3}-a \,x^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.440 |
|
| 10694 |
\begin{align*}
x&=y \left (y^{\prime }+\frac {1}{y^{\prime }}\right )+{y^{\prime }}^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.440 |
|
| 10695 |
\begin{align*}
y^{\prime \prime }&=a +b y+2 y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.441 |
|
| 10696 |
\begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right )+1 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.441 |
|
| 10697 |
\begin{align*}
x {y^{\prime }}^{2}+y y^{\prime }-y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.442 |
|
| 10698 |
\begin{align*}
y^{\prime \prime }+9 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.442 |
|
| 10699 |
\begin{align*}
\left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.443 |
|
| 10700 |
\begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+5 y&=25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.443 |
|