| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 15501 |
\begin{align*}
y^{\prime }&=a \left (t \right ) y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.446 |
|
| 15502 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.446 |
|
| 15503 |
\begin{align*}
y^{\prime }&=8 x^{3} {\mathrm e}^{-2 y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.447 |
|
| 15504 |
\begin{align*}
y y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.447 |
|
| 15505 |
\begin{align*}
x^{\prime \prime }&=4 x^{3}-4 x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.447 |
|
| 15506 |
\begin{align*}
y^{\prime }-5 y&=3 \,{\mathrm e}^{x}-2 x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.448 |
|
| 15507 |
\begin{align*}
x y^{2}-y^{3}+\left (1-x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.448 |
|
| 15508 |
\begin{align*}
t^{2}-y+\left (-t +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.449 |
|
| 15509 |
\begin{align*}
y^{\prime }-\tan \left (x \right ) y&=\cos \left (x \right )-2 x \sin \left (x \right ) \\
y \left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.450 |
|
| 15510 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.450 |
|
| 15511 |
\begin{align*}
y^{\prime }&=\frac {2 x +y+1}{x +2 y-4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.451 |
|
| 15512 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.451 |
|
| 15513 |
\begin{align*}
y^{\prime }&=\frac {x -\cos \left (x \right ) y}{y+\sin \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.451 |
|
| 15514 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.452 |
|
| 15515 |
\begin{align*}
x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
3.452 |
|
| 15516 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.457 |
|
| 15517 |
\begin{align*}
x^{2}+y^{2}-y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.457 |
|
| 15518 |
\begin{align*}
y^{\prime \prime }&=\frac {3 y}{4 \left (x^{2}+x +1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.458 |
|
| 15519 |
\begin{align*}
y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.459 |
|
| 15520 |
\begin{align*}
3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.459 |
|
| 15521 |
\begin{align*}
3 {y^{\prime \prime }}^{2}-y^{\prime \prime \prime } y^{\prime }-y^{\prime \prime } {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.460 |
|
| 15522 |
\begin{align*}
x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t}&={\mathrm e}^{-t} \\
x \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.460 |
|
| 15523 |
\begin{align*}
y^{\prime }&=\frac {y}{x \left (-1+y+x^{2} y^{3}+y^{4} x^{3}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.461 |
|
| 15524 |
\begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.461 |
|
| 15525 |
\begin{align*}
-\left (-x^{2}-x +1\right ) y-\left (2 x +1\right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.462 |
|
| 15526 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }&=3 t +2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.464 |
|
| 15527 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right )^{2}+4 y&=0 \\
y \left (0\right ) &= -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.465 |
|
| 15528 |
\begin{align*}
2 y-x y \ln \left (x \right )-2 x \ln \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.465 |
|
| 15529 |
\begin{align*}
y^{\prime } x&=x^{4}+4 y \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.466 |
|
| 15530 |
\begin{align*}
y+\left (y x -x -y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.466 |
|
| 15531 |
\begin{align*}
y^{\prime } x +\left (x +1\right ) y&={\mathrm e}^{-x} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.467 |
|
| 15532 |
\begin{align*}
\frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.467 |
|
| 15533 |
\begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.468 |
|
| 15534 |
\begin{align*}
y x +x -\left (1+x^{2}+y^{2}+y^{2} x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.468 |
|
| 15535 |
\begin{align*}
y {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.469 |
|
| 15536 |
\begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (x_{0} \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.471 |
|
| 15537 |
\begin{align*}
r^{\prime }&=r \cot \left (\theta \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.473 |
|
| 15538 |
\begin{align*}
y^{\prime \prime }&={\mathrm e}^{y} y^{\prime } \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
3.473 |
|
| 15539 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.474 |
|
| 15540 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.475 |
|
| 15541 |
\begin{align*}
y^{\prime \prime }+8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.476 |
|
| 15542 |
\begin{align*}
y^{\prime } \sqrt {a^{2}+x^{2}}+y-\sqrt {a^{2}+x^{2}}+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.477 |
|
| 15543 |
\begin{align*}
\left (t^{2}+3 y^{2}\right ) y^{\prime }&=-2 t y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.477 |
|
| 15544 |
\begin{align*}
y^{\prime }&=2 \csc \left (2 x \right ) \left (\sin \left (x \right )^{3}+y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.479 |
|
| 15545 |
\begin{align*}
\sin \left (\theta \right ) r^{\prime }&=-1-2 r \cos \left (\theta \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.479 |
|
| 15546 |
\begin{align*}
3 y y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.479 |
|
| 15547 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
3.480 |
|
| 15548 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.480 |
|
| 15549 |
\begin{align*}
v^{\prime }+\frac {2 v}{u}&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.480 |
|
| 15550 |
\begin{align*}
y^{\prime }-\cos \left (x \right )&=\tan \left (y\right )^{2} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.480 |
|
| 15551 |
\begin{align*}
3 y+y^{4} x^{3}+3 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.481 |
|
| 15552 |
\begin{align*}
y \left (1+y^{2}\right )+x \left (y^{2}-x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.481 |
|
| 15553 |
\begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.482 |
|
| 15554 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.483 |
|
| 15555 |
\begin{align*}
3 y+y^{\prime }&=\left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
3.484 |
|
| 15556 |
\begin{align*}
y^{\prime } t +y&=\cos \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= \frac {4}{\pi } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.484 |
|
| 15557 |
\begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
3.484 |
|
| 15558 |
\begin{align*}
2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right )&=0 \\
y \left (\frac {\pi }{12}\right ) &= \frac {\pi }{8} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.485 |
|
| 15559 |
\begin{align*}
y^{\prime }&=\sin \left (y\right )-\cos \left (x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.485 |
|
| 15560 |
\begin{align*}
y^{\prime }+\frac {3 y}{2}&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.485 |
|
| 15561 |
\begin{align*}
y^{\prime } x&=a \,x^{2}+b y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.487 |
|
| 15562 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.487 |
|
| 15563 |
\begin{align*}
y^{\prime }&=\sin \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.488 |
|
| 15564 |
\begin{align*}
x \left (-2 x^{3}+1\right ) y^{\prime }&=2 \left (-x^{3}+1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.490 |
|
| 15565 |
\begin{align*}
\left (x^{2}+y^{2}+x \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.491 |
|
| 15566 |
\begin{align*}
y^{\prime \prime }&=-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.492 |
|
| 15567 |
\begin{align*}
y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y&=\cos \left (x \right ) x \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.492 |
|
| 15568 |
\begin{align*}
3 y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2}+4 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.493 |
|
| 15569 |
\begin{align*}
y^{\prime } x -y+2 x^{2} y-x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.493 |
|
| 15570 |
\begin{align*}
x^{\prime }&=\frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \\
x \left (0\right ) &= {\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.493 |
|
| 15571 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=-\frac {y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.495 |
|
| 15572 |
\begin{align*}
y^{\prime }&=\frac {y}{x}+\sin \left (x^{2}\right ) \\
y \left (-1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.496 |
|
| 15573 |
\begin{align*}
y+3+\cot \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.497 |
|
| 15574 |
\begin{align*}
\left (t^{2}+9\right ) y^{\prime \prime }+2 y^{\prime } t&=0 \\
y \left (3\right ) &= 2 \pi \\
y^{\prime }\left (3\right ) &= {\frac {2}{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.497 |
|
| 15575 |
\begin{align*}
y^{\prime }&=\frac {y}{1+t} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.497 |
|
| 15576 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.498 |
|
| 15577 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.498 |
|
| 15578 |
\begin{align*}
r^{\prime }&=\frac {r \left (1+\ln \left (t \right )\right )}{t \left (1+\ln \left (r\right )\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.498 |
|
| 15579 |
\begin{align*}
3-y+2 y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.499 |
|
| 15580 |
\begin{align*}
x \sqrt {1+y^{2}}&=y y^{\prime } \sqrt {x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.500 |
|
| 15581 |
\begin{align*}
1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.500 |
|
| 15582 |
\begin{align*}
y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.501 |
|
| 15583 |
\begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.502 |
|
| 15584 |
\begin{align*}
2 y y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.502 |
|
| 15585 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.502 |
|
| 15586 |
\begin{align*}
y^{\prime }+\frac {y}{3}&=\frac {\left (1-2 x \right ) y^{4}}{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.503 |
|
| 15587 |
\begin{align*}
t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.504 |
|
| 15588 |
\begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.504 |
|
| 15589 |
\begin{align*}
2 y^{\prime } x&=y \left (1+y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.505 |
|
| 15590 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x -\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.505 |
|
| 15591 |
\begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2}+y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.506 |
|
| 15592 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.506 |
|
| 15593 |
\begin{align*}
y^{\prime } x +2 y&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.507 |
|
| 15594 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }+2 x y^{2}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.507 |
|
| 15595 |
\begin{align*}
x +y&=y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.510 |
|
| 15596 |
\begin{align*}
\left (1-y^{2} x^{2}\right ) y^{\prime }&=x y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.510 |
|
| 15597 |
\begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.510 |
|
| 15598 |
\begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.511 |
|
| 15599 |
\begin{align*}
y^{\prime }&=y \left (y^{2}+y \,{\mathrm e}^{b x}+{\mathrm e}^{2 b x}\right ) {\mathrm e}^{-2 b x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.511 |
|
| 15600 |
\begin{align*}
y^{\prime \prime }&=\frac {y^{\prime }}{x \left (\ln \left (x \right )-1\right )}-\frac {y}{x^{2} \left (\ln \left (x \right )-1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.512 |
|