2.3.156 Problems 15501 to 15600

Table 2.843: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

15501

25493

\begin{align*} y^{\prime }&=a \left (t \right ) y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

3.446

15502

25751

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

3.446

15503

7403

\begin{align*} y^{\prime }&=8 x^{3} {\mathrm e}^{-2 y} \\ y \left (1\right ) &= 0 \\ \end{align*}

3.447

15504

10048

\begin{align*} y y^{\prime \prime }&=1 \\ \end{align*}

3.447

15505

21787

\begin{align*} x^{\prime \prime }&=4 x^{3}-4 x \\ \end{align*}

3.447

15506

7792

\begin{align*} y^{\prime }-5 y&=3 \,{\mathrm e}^{x}-2 x +1 \\ \end{align*}

3.448

15507

20978

\begin{align*} x y^{2}-y^{3}+\left (1-x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

3.448

15508

17325

\begin{align*} t^{2}-y+\left (-t +y\right ) y^{\prime }&=0 \\ \end{align*}

3.449

15509

7736

\begin{align*} y^{\prime }-\tan \left (x \right ) y&=\cos \left (x \right )-2 x \sin \left (x \right ) \\ y \left (\frac {\pi }{6}\right ) &= 0 \\ \end{align*}

3.450

15510

12928

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2}&=0 \\ \end{align*}

3.450

15511

1667

\begin{align*} y^{\prime }&=\frac {2 x +y+1}{x +2 y-4} \\ \end{align*}

3.451

15512

22097

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

3.451

15513

22414

\begin{align*} y^{\prime }&=\frac {x -\cos \left (x \right ) y}{y+\sin \left (x \right )} \\ \end{align*}

3.451

15514

1285

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

3.452

15515

9004

\begin{align*} x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

3.452

15516

5969

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

3.457

15517

18058

\begin{align*} x^{2}+y^{2}-y y^{\prime } x&=0 \\ \end{align*}

3.457

15518

12650

\begin{align*} y^{\prime \prime }&=\frac {3 y}{4 \left (x^{2}+x +1\right )^{2}} \\ \end{align*}

3.458

15519

16964

\begin{align*} y^{\prime }+y x&=0 \\ \end{align*}

3.459

15520

20240

\begin{align*} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\ \end{align*}

3.459

15521

8801

\begin{align*} 3 {y^{\prime \prime }}^{2}-y^{\prime \prime \prime } y^{\prime }-y^{\prime \prime } {y^{\prime }}^{2}&=0 \\ \end{align*}

3.460

15522

14238

\begin{align*} x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t}&={\mathrm e}^{-t} \\ x \left (0\right ) &= 3 \\ \end{align*}

3.460

15523

12076

\begin{align*} y^{\prime }&=\frac {y}{x \left (-1+y+x^{2} y^{3}+y^{4} x^{3}\right )} \\ \end{align*}

3.461

15524

15623

\begin{align*} y^{\prime }&=-\frac {3 x^{2}}{2 y} \\ y \left (-1\right ) &= 0 \\ \end{align*}

3.461

15525

5825

\begin{align*} -\left (-x^{2}-x +1\right ) y-\left (2 x +1\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

3.462

15526

16101

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=3 t +2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

3.464

15527

2980

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right )^{2}+4 y&=0 \\ y \left (0\right ) &= -6 \\ \end{align*}

3.465

15528

7004

\begin{align*} 2 y-x y \ln \left (x \right )-2 x \ln \left (x \right ) y^{\prime }&=0 \\ \end{align*}

3.465

15529

3045

\begin{align*} y^{\prime } x&=x^{4}+4 y \\ y \left (1\right ) &= 0 \\ \end{align*}

3.466

15530

4426

\begin{align*} y+\left (y x -x -y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

3.466

15531

8433

\begin{align*} y^{\prime } x +\left (x +1\right ) y&={\mathrm e}^{-x} \sin \left (2 x \right ) \\ \end{align*}

3.467

15532

19100

\begin{align*} \frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

3.467

15533

16382

\begin{align*} y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\ \end{align*}

3.468

15534

24131

\begin{align*} y x +x -\left (1+x^{2}+y^{2}+y^{2} x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

3.468

15535

24842

\begin{align*} y {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

3.469

15536

9013

\begin{align*} y^{\prime }&=2 \sqrt {y} \\ y \left (x_{0} \right ) &= 0 \\ \end{align*}

3.471

15537

3019

\begin{align*} r^{\prime }&=r \cot \left (\theta \right ) \\ \end{align*}

3.473

15538

19367

\begin{align*} y^{\prime \prime }&={\mathrm e}^{y} y^{\prime } \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

3.473

15539

25096

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

3.474

15540

1250

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

3.475

15541

19461

\begin{align*} y^{\prime \prime }+8 y&=0 \\ \end{align*}

3.476

15542

11491

\begin{align*} y^{\prime } \sqrt {a^{2}+x^{2}}+y-\sqrt {a^{2}+x^{2}}+x&=0 \\ \end{align*}

3.477

15543

24954

\begin{align*} \left (t^{2}+3 y^{2}\right ) y^{\prime }&=-2 t y \\ \end{align*}

3.477

15544

4634

\begin{align*} y^{\prime }&=2 \csc \left (2 x \right ) \left (\sin \left (x \right )^{3}+y\right ) \\ \end{align*}

3.479

15545

24276

\begin{align*} \sin \left (\theta \right ) r^{\prime }&=-1-2 r \cos \left (\theta \right ) \\ \end{align*}

3.479

15546

24906

\begin{align*} 3 y y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{3} \\ \end{align*}

3.479

15547

8543

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

3.480

15548

16561

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +10 y&=0 \\ \end{align*}

3.480

15549

19710

\begin{align*} v^{\prime }+\frac {2 v}{u}&=3 \\ \end{align*}

3.480

15550

24274

\begin{align*} y^{\prime }-\cos \left (x \right )&=\tan \left (y\right )^{2} \cos \left (x \right ) \\ \end{align*}

3.480

15551

797

\begin{align*} 3 y+y^{4} x^{3}+3 y^{\prime } x&=0 \\ \end{align*}

3.481

15552

4354

\begin{align*} y \left (1+y^{2}\right )+x \left (y^{2}-x +1\right ) y^{\prime }&=0 \\ \end{align*}

3.481

15553

8311

\begin{align*} y^{\prime }&=\frac {1}{y} \\ y \left (0\right ) &= 1 \\ \end{align*}

3.482

15554

23984

\begin{align*} y^{\prime \prime }+y^{\prime }&=4 \\ \end{align*}

3.483

15555

3959

\begin{align*} 3 y+y^{\prime }&=\left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

3.484

15556

17167

\begin{align*} y^{\prime } t +y&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= \frac {4}{\pi } \\ \end{align*}

3.484

15557

22595

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

3.484

15558

4109

\begin{align*} 2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right )&=0 \\ y \left (\frac {\pi }{12}\right ) &= \frac {\pi }{8} \\ \end{align*}

3.485

15559

17844

\begin{align*} y^{\prime }&=\sin \left (y\right )-\cos \left (x \right ) \\ \end{align*}

3.485

15560

23969

\begin{align*} y^{\prime }+\frac {3 y}{2}&=x^{4} \\ \end{align*}

3.485

15561

4764

\begin{align*} y^{\prime } x&=a \,x^{2}+b y \\ \end{align*}

3.487

15562

23384

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

3.487

15563

24320

\begin{align*} y^{\prime }&=\sin \left (x +y\right ) \\ \end{align*}

3.488

15564

4999

\begin{align*} x \left (-2 x^{3}+1\right ) y^{\prime }&=2 \left (-x^{3}+1\right ) y \\ \end{align*}

3.490

15565

11569

\begin{align*} \left (x^{2}+y^{2}+x \right ) y^{\prime }-y&=0 \\ \end{align*}

3.491

15566

7367

\begin{align*} y^{\prime \prime }&=-4 y \\ \end{align*}

3.492

15567

20788

\begin{align*} y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y&=\cos \left (x \right ) x \\ \end{align*}

3.492

15568

11784

\begin{align*} 3 y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2}+4 y^{2}&=0 \\ \end{align*}

3.493

15569

14011

\begin{align*} y^{\prime } x -y+2 x^{2} y-x^{3}&=0 \\ \end{align*}

3.493

15570

14233

\begin{align*} x^{\prime }&=\frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \\ x \left (0\right ) &= {\mathrm e} \\ \end{align*}

3.493

15571

14495

\begin{align*} y^{\prime }-\frac {y}{x}&=-\frac {y^{2}}{x} \\ \end{align*}

3.495

15572

15599

\begin{align*} y^{\prime }&=\frac {y}{x}+\sin \left (x^{2}\right ) \\ y \left (-1\right ) &= -1 \\ \end{align*}

3.496

15573

2849

\begin{align*} y+3+\cot \left (x \right ) y^{\prime }&=0 \\ \end{align*}

3.497

15574

10034

\begin{align*} \left (t^{2}+9\right ) y^{\prime \prime }+2 y^{\prime } t&=0 \\ y \left (3\right ) &= 2 \pi \\ y^{\prime }\left (3\right ) &= {\frac {2}{3}} \\ \end{align*}

3.497

15575

25468

\begin{align*} y^{\prime }&=\frac {y}{1+t} \\ y \left (0\right ) &= 1 \\ \end{align*}

3.497

15576

1275

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=0 \\ \end{align*}

3.498

15577

14925

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

3.498

15578

22560

\begin{align*} r^{\prime }&=\frac {r \left (1+\ln \left (t \right )\right )}{t \left (1+\ln \left (r\right )\right )} \\ \end{align*}

3.498

15579

22512

\begin{align*} 3-y+2 y^{\prime } x&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

3.499

15580

8351

\begin{align*} x \sqrt {1+y^{2}}&=y y^{\prime } \sqrt {x^{2}+1} \\ \end{align*}

3.500

15581

16321

\begin{align*} 1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime }&=0 \\ \end{align*}

3.500

15582

12693

\begin{align*} y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

3.501

15583

8343

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ \end{align*}

3.502

15584

21761

\begin{align*} 2 y y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

3.502

15585

23470

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

3.502

15586

10006

\begin{align*} y^{\prime }+\frac {y}{3}&=\frac {\left (1-2 x \right ) y^{4}}{3} \\ \end{align*}

3.503

15587

2553

\begin{align*} t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y&=0 \\ \end{align*}

3.504

15588

13690

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y&=0 \\ \end{align*}

3.504

15589

4852

\begin{align*} 2 y^{\prime } x&=y \left (1+y^{2}\right ) \\ \end{align*}

3.505

15590

7321

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x -\frac {1}{x} \\ \end{align*}

3.505

15591

3258

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

3.506

15592

10124

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2}&=0 \\ \end{align*}

3.506

15593

8429

\begin{align*} y^{\prime } x +2 y&=3 \\ \end{align*}

3.507

15594

8663

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+2 x y^{2}&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

3.507

15595

2870

\begin{align*} x +y&=y^{\prime } x \\ \end{align*}

3.510

15596

5276

\begin{align*} \left (1-y^{2} x^{2}\right ) y^{\prime }&=x y^{3} \\ \end{align*}

3.510

15597

5791

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

3.510

15598

2843

\begin{align*} y^{\prime } x +y&=0 \\ \end{align*}

3.511

15599

12253

\begin{align*} y^{\prime }&=y \left (y^{2}+y \,{\mathrm e}^{b x}+{\mathrm e}^{2 b x}\right ) {\mathrm e}^{-2 b x} \\ \end{align*}

3.511

15600

12676

\begin{align*} y^{\prime \prime }&=\frac {y^{\prime }}{x \left (\ln \left (x \right )-1\right )}-\frac {y}{x^{2} \left (\ln \left (x \right )-1\right )} \\ \end{align*}

3.512