| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 15401 |
\begin{align*}
3 x^{\prime \prime }+19 x^{\prime }-14 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.391 |
|
| 15402 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }&=3 t +2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.392 |
|
| 15403 |
\begin{align*}
y^{\prime }-{\mathrm e}^{x} y&=2 x \,{\mathrm e}^{{\mathrm e}^{x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.392 |
|
| 15404 |
\begin{align*}
t^{2} y^{\prime \prime }-y^{\prime } t +5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.395 |
|
| 15405 |
\begin{align*}
y^{\prime }&=y^{2}-a^{2}+a \lambda \sin \left (\lambda x \right )+a^{2} \sin \left (\lambda x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.395 |
|
| 15406 |
\begin{align*}
{\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.395 |
|
| 15407 |
\begin{align*}
\left (2 x -1\right ) y+2 \left (x^{2}+y^{2}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.395 |
|
| 15408 |
\begin{align*}
b y+a x y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.396 |
|
| 15409 |
\begin{align*}
y^{\prime }&=f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.398 |
|
| 15410 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=8 x^{2}-3 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.398 |
|
| 15411 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
3.399 |
|
| 15412 |
\begin{align*}
y^{\prime }&=\sec \left (x \right )^{2} \sec \left (y\right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.402 |
|
| 15413 |
\begin{align*}
y^{\prime }&=\frac {4 y^{2}}{x^{2}}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.403 |
|
| 15414 |
\begin{align*}
\left (x -2 y+1\right ) y^{\prime }&=1+2 x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.404 |
|
| 15415 |
\begin{align*}
y^{\prime }&=x \sqrt {1-y^{2}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.404 |
|
| 15416 |
\begin{align*}
y^{\prime \prime }+2 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -\sqrt {2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.405 |
|
| 15417 |
\begin{align*}
{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.405 |
|
| 15418 |
\begin{align*}
\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.406 |
|
| 15419 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
y \left (2\right ) &= 0 \\
y^{\prime }\left (2\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.407 |
|
| 15420 |
\begin{align*}
\left (y^{3}-t \right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.407 |
|
| 15421 |
\begin{align*}
y^{\prime }-6 x \,{\mathrm e}^{x -y}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.408 |
|
| 15422 |
\begin{align*}
\left (c \,x^{2}+b \right ) y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.408 |
|
| 15423 |
\begin{align*}
x^{3} y^{\prime }-x^{2} y&=x^{5} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.408 |
|
| 15424 |
\begin{align*}
y^{\prime \prime }&=6 \sin \left (3 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.408 |
|
| 15425 |
\begin{align*}
\left ({\mathrm e}^{x}+{\mathrm e}^{-x}\right ) y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.409 |
|
| 15426 |
\begin{align*}
y^{\prime } x -y^{2} \ln \left (x \right )+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.409 |
|
| 15427 |
\begin{align*}
y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.410 |
|
| 15428 |
\begin{align*}
y^{\prime \prime }+6 y&=\sin \left (x \right )^{2} \cos \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.411 |
|
| 15429 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.411 |
|
| 15430 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.411 |
|
| 15431 |
\begin{align*}
{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.411 |
|
| 15432 |
\begin{align*}
x^{\prime \prime }+2 b x^{\prime }+k^{2} x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= v_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.411 |
|
| 15433 |
\begin{align*}
y y^{\prime }&=a_{0} +a_{1} y+a_{2} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.412 |
|
| 15434 |
\begin{align*}
\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.412 |
|
| 15435 |
\begin{align*}
y^{\prime }&=2 y^{2}+x y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.413 |
|
| 15436 |
\begin{align*}
y^{\prime }&=\frac {2 x}{1+2 y} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.413 |
|
| 15437 |
\begin{align*}
-y+\left (x^{4}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.414 |
|
| 15438 |
\begin{align*}
x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.414 |
|
| 15439 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.414 |
|
| 15440 |
\begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{t}}{y} \\
y \left (\ln \left (2\right )\right ) &= -8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.415 |
|
| 15441 |
\begin{align*}
\left (y^{3}-3 x \right ) y^{\prime }-3 y+x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.417 |
|
| 15442 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=20 \,{\mathrm e}^{-2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.417 |
|
| 15443 |
\begin{align*}
x \left (a +y\right )^{2} y^{\prime }&=b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.418 |
|
| 15444 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.418 |
|
| 15445 |
\begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.419 |
|
| 15446 |
\begin{align*}
2 y+y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.419 |
|
| 15447 |
\begin{align*}
\left (1-x \right ) y^{\prime }-1-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.419 |
|
| 15448 |
\begin{align*}
\left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.420 |
|
| 15449 |
\begin{align*}
y^{\prime }&=\frac {\left (x^{4}+x^{3}+x +3 y^{2}\right ) y}{\left (x +6 y^{2}\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.421 |
|
| 15450 |
\begin{align*}
y^{2} y^{\prime }&=2+x \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.422 |
|
| 15451 |
\begin{align*}
y^{\prime \prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.423 |
|
| 15452 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.423 |
|
| 15453 |
\begin{align*}
12 x^{\prime \prime }-25 x^{\prime }+12 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.423 |
|
| 15454 |
\begin{align*}
y^{\prime } x&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.423 |
|
| 15455 |
\begin{align*}
8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime }&=0 \\
y \left (\frac {\pi }{12}\right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.424 |
|
| 15456 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.424 |
|
| 15457 |
\begin{align*}
x^{\prime }&=-t^{2} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.424 |
|
| 15458 |
\begin{align*}
x \sqrt {1+y^{2}}&=y y^{\prime } \sqrt {x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.424 |
|
| 15459 |
\begin{align*}
t^{2} y^{\prime }&=y^{2}+t y+t^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.424 |
|
| 15460 |
\begin{align*}
y^{\prime }&=1+x +y+y x \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.425 |
|
| 15461 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
3.425 |
|
| 15462 |
\begin{align*}
{\mathrm e}^{y^{2}} \left (2 y y^{\prime }+\frac {2}{x}\right )&=\frac {1}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.426 |
|
| 15463 |
\begin{align*}
y^{\prime \prime }&=-\frac {y^{\prime }}{x}-\frac {\left (-x -1\right ) y}{x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.427 |
|
| 15464 |
\begin{align*}
{\mathrm e}^{t} \sin \left (y\right )+\left (1+{\mathrm e}^{t} \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.427 |
|
| 15465 |
\begin{align*}
y^{\prime }+\tan \left (x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.427 |
|
| 15466 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \cos \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.428 |
|
| 15467 |
\begin{align*}
4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.428 |
|
| 15468 |
\begin{align*}
2 x -y+4+\left (x -2 y-2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.428 |
|
| 15469 |
\begin{align*}
y^{\prime }&=t^{2} \tan \left (y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.428 |
|
| 15470 |
\begin{align*}
x^{\prime \prime }-k^{2} x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= v_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.429 |
|
| 15471 |
\begin{align*}
y^{\prime } \sqrt {b^{2}+y^{2}}&=\sqrt {a^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.429 |
|
| 15472 |
\begin{align*}
y^{\prime \prime }-y x -x^{6}+64&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.429 |
|
| 15473 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.429 |
|
| 15474 |
\begin{align*}
y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.430 |
|
| 15475 |
\begin{align*}
y^{\prime } x&=\sqrt {x}+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.430 |
|
| 15476 |
\begin{align*}
x +2 y-1+\left (2 x +4 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.432 |
|
| 15477 |
\begin{align*}
y^{\prime }&=\frac {y^{2}-4 t y+6 t^{2}}{t^{2}} \\
y \left (2\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.432 |
|
| 15478 |
\begin{align*}
y^{\prime }&=t^{2}+t^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.434 |
|
| 15479 |
\begin{align*}
y^{\prime }&=\left (1-y\right ) \cos \left (x \right ) \\
y \left (\pi \right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.435 |
|
| 15480 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.435 |
|
| 15481 |
\begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.435 |
|
| 15482 |
\begin{align*}
y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.435 |
|
| 15483 |
\begin{align*}
x^{n} y^{\prime \prime }+c \left (a x +b \right )^{n -4} y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.436 |
|
| 15484 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x&=5 \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.437 |
|
| 15485 |
\begin{align*}
x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.438 |
|
| 15486 |
\begin{align*}
y^{\prime }&=3 y^{2}-\sin \left (x \right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.439 |
|
| 15487 |
\begin{align*}
3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.440 |
|
| 15488 |
\begin{align*}
b \tan \left (x \right )^{2} y-2 \csc \left (2 x \right ) \left (1-a \sin \left (x \right )^{2}\right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.440 |
|
| 15489 |
\begin{align*}
y^{\prime }&=x^{2} {\mathrm e}^{-3 y} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.440 |
|
| 15490 |
\begin{align*}
y^{\prime }&=x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.443 |
|
| 15491 |
\begin{align*}
y^{\prime \prime }&=-\frac {b^{2} y}{\left (a^{2}+x^{2}\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.443 |
|
| 15492 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=-2 x^{2} \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.444 |
|
| 15493 |
\begin{align*}
2 x^{2} y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.444 |
|
| 15494 |
\begin{align*}
{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} \left (y-c \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.444 |
|
| 15495 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.444 |
|
| 15496 |
\begin{align*}
y^{\prime }&=y^{3}+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.444 |
|
| 15497 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= -{\frac {5}{16}} \\
y^{\prime }\left (0\right ) &= {\frac {9}{16}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.444 |
|
| 15498 |
\begin{align*}
\frac {r^{\prime }}{r}&=\tan \left (\theta \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.444 |
|
| 15499 |
\begin{align*}
\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.445 |
|
| 15500 |
\begin{align*}
\cos \left (x \right ) y^{\prime }&=1-y-\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.446 |
|