2.2.48 Problems 4701 to 4800

Table 2.97: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4701

y=a+by+A0+B0y

[_quadrature]

152.247

4702

y=ax+by

[[_homogeneous, ‘class G‘], _Chini]

4.352

4703

y+x3=xx4+4y

[[_1st_order, _with_linear_symmetries]]

3.224

4704

y+2y(1xy)=0

[_Bernoulli]

1.534

4705

y=a+by2

[_quadrature]

4.880

4706

y=ya+by

[_quadrature]

220.984

4707

y+(f(x)y)g(x)(ya)(yb)=0

[‘y=_G(x,y’)‘]

5.096

4708

y=XY

[_quadrature]

0.717

4709

y=cos(y)cos(x)2

[_separable]

2.949

4710

y=sec(x)2cot(y)cos(y)

[_separable]

2.947

4711

y=a+bcos(Ax+By)

[[_homogeneous, ‘class C‘], _dAlembert]

72.329

4712

y+f(x)+g(x)sin(ay)+h(x)cos(ay)=0

[‘y=_G(x,y’)‘]

5.504

4713

y=a+bcos(y)

[_quadrature]

39.465

4714

y+x(sin(2y)x2cos(y)2)=0

[‘y=_G(x,y’)‘]

5.566

4715

y+tan(x)sec(x)cos(y)2=0

[_separable]

2.634

4716

y=cot(x)cot(y)

[_separable]

3.462

4717

y+cot(x)cot(y)=0

[_separable]

2.925

4718

y=sin(x)(csc(y)cot(y))

[_separable]

3.156

4719

y=tan(x)cot(y)

[_separable]

2.207

4720

y+tan(x)cot(y)=0

[_separable]

3.184

4721

y+sin(2x)csc(2y)=0

[_separable]

4.246

4722

y=tan(x)(tan(y)+sec(x)sec(y))

[‘y=_G(x,y’)‘]

8.013

4723

y=cos(x)sec(y)2

[_separable]

2.113

4724

y=sec(x)2sec(y)3

[_separable]

2.157

4725

y=a+bsin(y)

[_quadrature]

36.493

4726

y=(1+cos(x)sin(y))tan(y)

[‘y=_G(x,y’)‘]

7.363

4727

y+csc(2x)sin(2y)=0

[_separable]

5.576

4728

y+f(x)+g(x)tan(y)=0

[‘y=_G(x,y’)‘]

3.226

4729

y=a+bcos(y)

[_quadrature]

23.244

4730

y=ey+x

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.370

4731

y=ex+y

[_separable]

2.083

4732

y=ex(a+bey)

[_separable]

2.181

4733

yln(x)ln(y)+y=0

[_separable]

1.727

4734

y=xm1y1nf(axm+byn)

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.128

4735

y=af(y)

[_quadrature]

0.755

4736

y=f(a+bx+cy)

[[_homogeneous, ‘class C‘], _dAlembert]

1.306

4737

y=f(x)g(y)

[_separable]

1.199

4738

y=sec(x)2+ysec(x)Csx(x)

[_linear]

1.579

4739

2y=2sin(y)2tan(y)sin(2y)x

[‘y=_G(x,y’)‘]

47.083

4740

2y+ax=a2x24bx24cy

[[_homogeneous, ‘class G‘]]

6.413

4741

3y=x+x23y

[[_1st_order, _with_linear_symmetries], _dAlembert]

5.630

4742

yx=a2x2

[_quadrature]

0.643

4743

yx+x+y=0

[_linear]

2.342

4744

yx+x2y=0

[_linear]

1.190

4745

yx=x3y

[_linear]

1.197

4746

yx=1+x3+y

[_linear]

0.959

4747

yx=xm+y

[_linear]

0.933

4748

yx=xsin(x)y

[_linear]

1.280

4749

yx=x2sin(x)+y

[_linear]

1.212

4750

yx=xnln(x)y

[_linear]

1.368

4751

yx=sin(x)2y

[_linear]

1.427

4752

yx=ay

[_separable]

1.385

4753

yx=1+x+ay

[_linear]

2.087

4754

yx=ax+by

[_linear]

3.372

4755

yx=ax2+by

[_linear]

1.897

4756

yx=a+bxn+cy

[_linear]

1.467

4757

yx+2+(3x)y=0

[_linear]

1.225

4758

yx+x+(ax+2)y=0

[_linear]

1.211

4759

yx+(bx+a)y=0

[_separable]

1.415

4760

yx=x3+(2x2+1)y

[_linear]

1.344

4761

yx=ax(bx2+1)y

[_linear]

1.286

4762

yx+x+(ax2+2)y=0

[_linear]

1.334

4763

yx+x2+y2=0

[_rational, _Riccati]

1.330

4764

yx=x2+y(1+y)

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.500

4765

yxy+y2=x2/3

[_rational, _Riccati]

9.639

4766

yx=a+by2

[_separable]

1.873

4767

yx=ax2+y+by2

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.529

4768

yx=ax2n+(n+by)y

[_rational, _Riccati]

3.344

4769

yx=axn+by+cy2

[_rational, _Riccati]

2.477

4770

yx=k+axn+by+cy2

[_rational, _Riccati]

3.188

4771

yx+a+xy2=0

[_rational, [_Riccati, _special]]

1.393

4772

yx+(1xy)y=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.178

4773

yx=(1xy)y

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.756

4774

yx=(xy+1)y

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.750

4775

yx=ax3(1xy)y

[_Bernoulli]

1.385

4776

yx=x3+(2x2+1)y+xy2

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.241

4777

yx=y(1+2xy)

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.700

4778

yx+bx+(2+yax)y=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.523

4779

yx+a0+a1x+(a2+a3xy)y=0

[_rational, _Riccati]

5.038

4780

yx+ax2y2+2y=b

[_rational, _Riccati]

1.801

4781

yx+xm+(nm)y2+xny2=0

[_rational, _Riccati]

2.711

4782

yx+(a+bxny)y=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.914

4783

yx=axmbycxny2

[_rational, _Riccati]

3.622

4784

yx=2xy+axn(xy)2

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

3.866

4785

yx+(1ayln(x))y=0

[_Bernoulli]

2.271

4786

yx=y+(x2y2)f(x)

[[_homogeneous, ‘class D‘], _Riccati]

2.415

4787

yx=y(1+y2)

[_separable]

4.020

4788

yx+y(1xy2)=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.172

4789

yx+y=a(x2+1)y3

[_rational, _Bernoulli]

3.047

4790

yx=ay+b(x2+1)y3

[_rational, _Bernoulli]

3.399

4791

yx+2y=ax2kyk

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.939

4792

yx=4y4y

[_separable]

4.553

4793

yx+2y=1+y2

[_separable]

2.950

4794

yx=y+x2+y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.305

4795

yx=y+x2y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

143.657

4796

yx=y+xx2+y2

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.860

4797

yx=yx(xy)x2+y2

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.776

4798

yx=y+ay2+b2x2

[[_homogeneous, ‘class A‘], _dAlembert]

27.414

4799

yx+(sin(y)3x2cos(y))cos(y)=0

[‘y=_G(x,y’)‘]

2.759

4800

yx+xy+xcos(yx)=0

[[_homogeneous, ‘class A‘], _dAlembert]

2.912