2.2.48 Problems 4701 to 4800

Table 2.97: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4701

y=a+by+A0+B0y

[_quadrature]

78.381

4702

y=ax+by

[[_homogeneous, ‘class G‘], _Chini]

4.493

4703

y+x3=xx4+4y

[[_1st_order, _with_linear_symmetries]]

3.899

4704

y+2y(1xy)=0

[_Bernoulli]

1.306

4705

y=a+by2

[_quadrature]

8.455

4706

y=ya+by

[_quadrature]

119.475

4707

y+(f(x)y)g(x)(ya)(yb)=0

[‘y=_G(x,y’)‘]

5.625

4708

y=XY

[_quadrature]

0.437

4709

y=cos(x)2cos(y)

[_separable]

2.479

4710

y=sec(x)2cot(y)cos(y)

[_separable]

2.897

4711

y=a+bcos(Ax+By)

[[_homogeneous, ‘class C‘], _dAlembert]

36.640

4712

y+f(x)+g(x)sin(ay)+h(x)cos(ay)=0

[‘y=_G(x,y’)‘]

6.354

4713

y=a+bcos(y)

[_quadrature]

37.933

4714

y+x(sin(2y)x2cos(y)2)=0

[‘y=_G(x,y’)‘]

5.098

4715

y+tan(x)sec(x)cos(y)2=0

[_separable]

2.635

4716

y=cot(x)cot(y)

[_separable]

1.977

4717

y+cot(x)cot(y)=0

[_separable]

2.075

4718

y=sin(x)(csc(y)cot(y))

[_separable]

3.218

4719

y=tan(x)cot(y)

[_separable]

1.858

4720

y+tan(x)cot(y)=0

[_separable]

1.852

4721

y+sin(2x)csc(2y)=0

[_separable]

6.009

4722

y=tan(x)(tan(y)+sec(x)sec(y))

[‘y=_G(x,y’)‘]

7.303

4723

y=cos(x)sec(y)2

[_separable]

2.124

4724

y=sec(x)2sec(y)3

[_separable]

2.095

4725

y=a+bsin(y)

[_quadrature]

38.447

4726

y=(1+cos(x)sin(y))tan(y)

unknown

7.890

4727

y+csc(2x)sin(2y)=0

[_separable]

5.028

4728

y+f(x)+g(x)tan(y)=0

[‘y=_G(x,y’)‘]

3.836

4729

y=a+bcos(y)

[_quadrature]

11.815

4730

y=ey+x

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.389

4731

y=ex+y

[_separable]

2.665

4732

y=ex(a+bey)

[_separable]

1.875

4733

yln(x)ln(y)+y=0

[_separable]

1.704

4734

y=xm1y1nf(axm+byn)

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.713

4735

y=af(y)

[_quadrature]

1.068

4736

y=f(a+bx+cy)

[[_homogeneous, ‘class C‘], _dAlembert]

1.138

4737

y=f(x)g(y)

[_separable]

1.063

4738

y=sec(x)2+ysec(x)Csx(x)

[_linear]

1.448

4739

2y=2sin(y)2tan(y)xsin(2y)

[‘y=_G(x,y’)‘]

44.194

4740

2y+ax=a2x24bx24cy

[[_homogeneous, ‘class G‘]]

13.868

4741

3y=x+x23y

[[_1st_order, _with_linear_symmetries], _dAlembert]

8.118

4742

xy=a2x2

[_quadrature]

0.500

4743

xy+x+y=0

[_linear]

2.765

4744

xy+x2y=0

[_linear]

1.607

4745

xy=x3y

[_linear]

1.504

4746

xy=1+x3+y

[_linear]

1.365

4747

xy=xm+y

[_linear]

0.728

4748

xy=xsin(x)y

[_linear]

1.415

4749

xy=x2sin(x)+y

[_linear]

1.572

4750

xy=xnln(x)y

[_linear]

1.246

4751

xy=sin(x)2y

[_linear]

1.493

4752

xy=ay

[_separable]

1.204

4753

xy=1+x+ay

[_linear]

1.595

4754

xy=ax+by

[_linear]

2.328

4755

xy=ax2+by

[_linear]

1.415

4756

xy=a+bxn+cy

[_linear]

1.297

4757

xy+2+(3x)y=0

[_linear]

1.290

4758

xy+x+(ax+2)y=0

[_linear]

1.078

4759

xy+(bx+a)y=0

[_separable]

1.098

4760

xy=x3+(2x2+1)y

[_linear]

1.570

4761

xy=ax(bx2+1)y

[_linear]

1.145

4762

xy+x+(ax2+2)y=0

[_linear]

1.188

4763

xy+x2+y2=0

[_rational, _Riccati]

1.155

4764

xy=x2+y(y+1)

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.683

4765

xyy+y2=x2/3

[_rational, _Riccati]

11.772

4766

xy=a+by2

[_separable]

1.477

4767

xy=ax2+y+by2

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.372

4768

xy=ax2n+(n+by)y

[_rational, _Riccati]

2.848

4769

xy=axn+by+cy2

[_rational, _Riccati]

2.379

4770

xy=k+axn+by+cy2

[_rational, _Riccati]

2.458

4771

xy+a+xy2=0

[_rational, [_Riccati, _special]]

1.087

4772

xy+(1xy)y=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.630

4773

xy=(1xy)y

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.498

4774

xy=(1+xy)y

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.480

4775

xy=ax3(1xy)y

[_Bernoulli]

1.319

4776

xy=x3+(2x2+1)y+xy2

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.975

4777

xy=y(2xy+1)

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.384

4778

xy+bx+(2+yax)y=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.169

4779

xy+a0+a1x+(a2+a3xy)y=0

[_rational, _Riccati]

6.668

4780

xy+ax2y2+2y=b

[_rational, _Riccati]

1.514

4781

xy+xm+(nm)y2+xny2=0

[_rational, _Riccati]

2.255

4782

xy+(a+bxny)y=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.760

4783

xy=axmbycxny2

[_rational, _Riccati]

3.286

4784

xy=2xy+axn(xy)2

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

3.069

4785

xy+(1ayln(x))y=0

[_Bernoulli]

2.145

4786

xy=y+(x2y2)f(x)

[[_homogeneous, ‘class D‘], _Riccati]

2.020

4787

xy=y(1+y2)

[_separable]

4.719

4788

xy+y(1xy2)=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.800

4789

xy+y=a(x2+1)y3

[_rational, _Bernoulli]

3.021

4790

xy=ay+b(x2+1)y3

[_rational, _Bernoulli]

3.674

4791

xy+2y=ax2kyk

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.405

4792

xy=4y4y

[_separable]

3.608

4793

xy+2y=1+y2

[_separable]

3.556

4794

xy=y+x2+y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.355

4795

xy=y+x2y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

97.385

4796

xy=y+xx2+y2

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.550

4797

xy=yx(xy)x2+y2

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.274

4798

xy=y+ay2+b2x2

[[_homogeneous, ‘class A‘], _dAlembert]

11.652

4799

xy+(sin(y)3x2cos(y))cos(y)=0

[‘y=_G(x,y’)‘]

2.774

4800

xy+xy+xcos(yx)=0

[[_homogeneous, ‘class A‘], _dAlembert]

3.326