2.2.48 Problems 4701 to 4800

Table 2.97: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4701

\[ {}2 x y y^{\prime }+x^{2} \left (a \,x^{3}+1\right ) = 6 y^{2} \]

[_rational, _Bernoulli]

4.543

4702

\[ {}\left (3-x +2 y x \right ) y^{\prime }+3 x^{2}-y+y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.077

4703

\[ {}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

32.533

4704

\[ {}x \left (x +2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

92.453

4705

\[ {}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15.019

4706

\[ {}x \left (1+x -2 y\right ) y^{\prime }+\left (1-2 x +y\right ) y = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.569

4707

\[ {}x \left (1-x -2 y\right ) y^{\prime }+\left (2 x +y+1\right ) y = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.102

4708

\[ {}2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10.954

4709

\[ {}2 \left (x +1\right ) y y^{\prime }+2 x -3 x^{2}+y^{2} = 0 \]

[_exact, _rational, _Bernoulli]

2.552

4710

\[ {}x \left (2 x +3 y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14.414

4711

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

22.793

4712

\[ {}\left (3+6 y x +x^{2}\right ) y^{\prime }+2 x +2 y x +3 y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.043

4713

\[ {}3 x \left (x +2 y\right ) y^{\prime }+x^{3}+3 y \left (y+2 x \right ) = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.699

4714

\[ {}a x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

22.709

4715

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19.437

4716

\[ {}x \left (a +b y\right ) y^{\prime } = c y \]

[_separable]

6.082

4717

\[ {}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

22.947

4718

\[ {}x \left (x^{n}+a y\right ) y^{\prime }+\left (b +c y\right ) y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

14.276

4719

\[ {}\left (1-x^{2} y\right ) y^{\prime }+1-x y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.902

4720

\[ {}\left (1-x^{2} y\right ) y^{\prime }-1+x y^{2} = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.952

4721

\[ {}x \left (1-y x \right ) y^{\prime }+\left (y x +1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.891

4722

\[ {}x \left (2+y x \right ) y^{\prime } = 3+2 x^{3}-2 y-x y^{2} \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.952

4723

\[ {}x \left (2-y x \right ) y^{\prime }+2 y-x y^{2} \left (y x +1\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5.747

4724

\[ {}x \left (3-y x \right ) y^{\prime } = y \left (y x -1\right ) \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.918

4725

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

4.186

4726

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (x +1\right ) y^{2} = 0 \]

[_separable]

2.558

4727

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

6.821

4728

\[ {}\left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+x y^{2} = 0 \]

[_rational, _Bernoulli]

2.362

4729

\[ {}2 x^{2} y y^{\prime } = x^{2} \left (2 x +1\right )-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

6.075

4730

\[ {}x \left (1-2 y x \right ) y^{\prime }+y \left (2 y x +1\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.888

4731

\[ {}x \left (2 y x +1\right ) y^{\prime }+\left (2+3 y x \right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

22.898

4732

\[ {}x \left (2 y x +1\right ) y^{\prime }+\left (1+2 y x -x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

6.749

4733

\[ {}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

88.178

4734

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

5.029

4735

\[ {}3 x^{2} y y^{\prime }+1+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6.894

4736

\[ {}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 y x +2 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

33.823

4737

\[ {}\left (1-x^{3} y\right ) y^{\prime } = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.690

4738

\[ {}2 x^{3} y y^{\prime }+a +3 x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5.109

4739

\[ {}x \left (3-2 x^{2} y\right ) y^{\prime } = 4 x -3 y+3 x^{2} y^{2} \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.786

4740

\[ {}x \left (3+2 x^{2} y\right ) y^{\prime }+\left (4+3 x^{2} y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17.260

4741

\[ {}8 x^{3} y y^{\prime }+3 x^{4}-6 x^{2} y^{2}-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

23.367

4742

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

9.248

4743

\[ {}3 x^{4} y y^{\prime } = 1-2 x^{3} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

8.851

4744

\[ {}x^{7} y y^{\prime } = 2 x^{2}+2+5 x^{3} y \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.505

4745

\[ {}y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0 \]

[_separable]

6.817

4746

\[ {}\left (1+y\right ) y^{\prime } \sqrt {x^{2}+1} = y^{3} \]

[_separable]

7.336

4747

\[ {}\left (\operatorname {g0} \left (x \right )+y \operatorname {g1} \left (x \right )\right ) y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \]

[[_Abel, ‘2nd type‘, ‘class C‘]]

4.457

4748

\[ {}y^{2} y^{\prime }+x \left (2-y\right ) = 0 \]

[_separable]

4.861

4749

\[ {}y^{2} y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

1.603

4750

\[ {}\left (x +y^{2}\right ) y^{\prime }+y = b x +a \]

[_exact, _rational]

1.866

4751

\[ {}\left (x -y^{2}\right ) y^{\prime } = x^{2}-y \]

[_exact, _rational]

1.518

4752

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

28.065

4753

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.602

4754

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15.517

4755

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

288.767

4756

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17.722

4757

\[ {}\left (1-x^{2}+y^{2}\right ) y^{\prime } = 1+x^{2}-y^{2} \]

[[_1st_order, _with_linear_symmetries], _rational]

1.536

4758

\[ {}\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+2 y x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.666

4759

\[ {}\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+b^{2}+x^{2}+2 y x = 0 \]

[_exact, _rational]

4.608

4760

\[ {}\left (x +x^{2}+y^{2}\right ) y^{\prime } = y \]

[_rational]

2.280

4761

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13.406

4762

\[ {}\left (x^{4}+y^{2}\right ) y^{\prime } = 4 x^{3} y \]

[[_homogeneous, ‘class G‘], _rational]

8.049

4763

\[ {}y \left (1+y\right ) y^{\prime } = \left (x +1\right ) x \]

[_separable]

2.684

4764

\[ {}\left (x +2 y+y^{2}\right ) y^{\prime }+y \left (1+y\right )+\left (x +y\right )^{2} y^{2} = 0 \]

[_rational]

1.470

4765

\[ {}\left (x^{2}+2 y+y^{2}\right ) y^{\prime }+2 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.698

4766

\[ {}\left (x^{3}+2 y-y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.648

4767

\[ {}\left (1+y+y x +y^{2}\right ) y^{\prime }+1+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5.317

4768

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

19.681

4769

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

11.515

4770

\[ {}\left (x^{2}+2 y x -y^{2}\right ) y^{\prime }+x^{2}-2 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16.454

4771

\[ {}\left (x +y\right )^{2} y^{\prime } = x^{2}-2 y x +5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

23.621

4772

\[ {}\left (a +b +x +y\right )^{2} y^{\prime } = 2 \left (a +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational]

11.173

4773

\[ {}\left (2 x^{2}+4 y x -y^{2}\right ) y^{\prime } = x^{2}-4 y x -2 y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

19.269

4774

\[ {}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

36.358

4775

\[ {}\left (1-3 x -y\right )^{2} y^{\prime } = \left (1-2 y\right ) \left (3-6 x -4 y\right ) \]

[[_homogeneous, ‘class C‘], _rational]

7.243

4776

\[ {}\left (\cot \left (x \right )-2 y^{2}\right ) y^{\prime } = y^{3} \csc \left (x \right ) \sec \left (x \right ) \]

[‘y=_G(x,y’)‘]

89.675

4777

\[ {}3 y^{2} y^{\prime } = 1+x +a y^{3} \]

[_rational, _Bernoulli]

3.547

4778

\[ {}\left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 y x = 0 \]

[_exact, _rational]

1.530

4779

\[ {}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17.757

4780

\[ {}3 \left (x^{2}-y^{2}\right ) y^{\prime }+3 \,{\mathrm e}^{x}+6 x y \left (x +1\right )-2 y^{3} = 0 \]

[‘y=_G(x,y’)‘]

3.187

4781

\[ {}\left (3 x^{2}+2 y x +4 y^{2}\right ) y^{\prime }+2 x^{2}+6 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

23.220

4782

\[ {}\left (1-3 x +2 y\right )^{2} y^{\prime } = \left (4+2 x -3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational]

47.427

4783

\[ {}\left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }+x^{2}-3 x y^{2} = 0 \]

[_exact, _rational]

5.496

4784

\[ {}\left (x -6 y\right )^{2} y^{\prime }+a +2 y x -6 y^{2} = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.576

4785

\[ {}\left (x^{2}+a y^{2}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9.675

4786

\[ {}\left (x^{2}+y x +a y^{2}\right ) y^{\prime } = a \,x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

53.491

4787

\[ {}\left (a \,x^{2}+2 y x -a y^{2}\right ) y^{\prime }+x^{2}-2 a x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

33.819

4788

\[ {}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

812.516

4789

\[ {}x \left (1-y^{2}\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

2.999

4790

\[ {}x \left (3 x -y^{2}\right ) y^{\prime }+\left (5 x -2 y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

23.054

4791

\[ {}x \left (x^{2}+y^{2}\right ) y^{\prime } = \left (x^{2}+x^{4}+y^{2}\right ) y \]

[[_homogeneous, ‘class D‘], _rational]

3.256

4792

\[ {}x \left (1-x^{2}+y^{2}\right ) y^{\prime }+\left (1+x^{2}-y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.141

4793

\[ {}x \left (a -x^{2}-y^{2}\right ) y^{\prime }+\left (a +x^{2}+y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

12.996

4794

\[ {}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

63.655

4795

\[ {}\left (x \left (a -x^{2}-y^{2}\right )+y\right ) y^{\prime }+x -\left (a -x^{2}-y^{2}\right ) y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

6.052

4796

\[ {}x \left (a +y\right )^{2} y^{\prime } = b y^{2} \]

[_separable]

8.224

4797

\[ {}x \left (x^{2}-y x +y^{2}\right ) y^{\prime }+\left (x^{2}+y x +y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

134.362

4798

\[ {}x \left (x^{2}-y x -y^{2}\right ) y^{\prime } = \left (x^{2}+y x -y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

124.980

4799

\[ {}x \left (x^{2}+a x y+y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

350.796

4800

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

92.563