2.2.49 Problems 4801 to 4900

Table 2.99: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4801

yx=yxcos(yx)2

[[_homogeneous, ‘class A‘], _dAlembert]

3.632

4802

yx=(2x2+1)cot(y)2

[_separable]

2.537

4803

yx=ycot(y)2

[_separable]

3.145

4804

yx+y+2xsec(xy)=0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8.443

4805

yxy+xsec(yx)=0

[[_homogeneous, ‘class A‘], _dAlembert]

6.283

4806

yx=y+xsec(yx)2

[[_homogeneous, ‘class A‘], _dAlembert]

10.363

4807

yx=sin(xy)

[‘y=_G(x,y’)‘]

3.425

4808

yx=y+xsin(yx)

[[_homogeneous, ‘class A‘], _dAlembert]

3.901

4809

yx+tan(y)=0

[_separable]

1.943

4810

yx+x+tan(x+y)=0

[[_1st_order, _with_linear_symmetries]]

2.401

4811

yx=yxtan(yx)

[[_homogeneous, ‘class A‘], _dAlembert]

3.481

4812

yx=(1+y2)(x2+arctan(y))

[‘y=_G(x,y’)‘]

2.489

4813

yx=eyxx+y

[[_homogeneous, ‘class A‘], _dAlembert]

4.913

4814

yx=x+y+eyxx

[[_homogeneous, ‘class A‘], _dAlembert]

5.793

4815

yx=yln(y)

[_separable]

1.685

4816

yx=(1+ln(x)ln(y))y

[[_homogeneous, ‘class A‘], _dAlembert]

3.618

4817

yx+(1ln(x)ln(y))y=0

[[_homogeneous, ‘class G‘]]

2.184

4818

yx=y2xtanh(yx)

[[_homogeneous, ‘class A‘], _dAlembert]

133.764

4819

yx+ny=f(x)g(xny)

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.323

4820

yx=yf(xmyn)

[[_homogeneous, ‘class G‘]]

1.619

4821

(x+1)y=x3(3x+4)+y

[_linear]

0.998

4822

(x+1)y=(x+1)4+2y

[_linear]

1.354

4823

(x+1)y=ex(x+1)n+1+ny

[_linear]

1.842

4824

(x+1)y=ay+bxy2

[_rational, _Bernoulli]

3.670

4825

(x+1)y+y+(x+1)4y3=0

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

3.240

4826

(x+1)y=(1xy3)y

[_rational, _Bernoulli]

2.009

4827

(x+1)y=1+y+(x+1)1+y

[[_1st_order, _with_linear_symmetries]]

2.301

4828

(x+a)y=bx

[_quadrature]

0.361

4829

(x+a)y=bx+y

[_linear]

1.123

4830

(x+a)y+bx2+y=0

[_linear]

1.015

4831

(x+a)y=2(x+a)5+3y

[_linear]

1.531

4832

(x+a)y=b+cy

[_separable]

1.497

4833

(x+a)y=bx+cy

[_linear]

2.234

4834

(x+a)y=y(1ay)

[_separable]

1.547

4835

(ax)y=y+(cx+b)y3

[_rational, _Bernoulli]

2.787

4836

2yx=2x3y

[_linear]

6.986

4837

2yx+1=4ixy+y2

[_rational, _Riccati]

2.479

4838

2yx=y(1+y2)

[_separable]

3.808

4839

2yx+y(1+y2)=0

[_separable]

5.408

4840

2yx=(1+x6y2)y

[_rational, _Bernoulli]

1.505

4841

2yx+4y+a+a24b4cy=0

[_separable]

4.180

4842

(2x+1)y=16+32x6y

[_linear]

1.775

4843

(2x+1)y=4ey2

[_separable]

2.106

4844

2(1x)y=4x1x+y

[_linear]

1.722

4845

2(x+1)y+2y+(x+1)4y3=0

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

2.730

4846

3yx=3x2/3+(13y)y

[_rational, _Riccati]

1.954

4847

3yx=(2+xy3)y

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

23.499

4848

3yx=(1+3xy3ln(x))y

[_Bernoulli]

3.418

4849

x2y=y+a

[_separable]

1.071

4850

x2y=a+bx+cx2+xy

[_linear]

0.964

4851

x2y=a+bx+cx2xy

[_linear]

0.954

4852

x2y+(2x+1)y=x2

[_linear]

1.600

4853

x2y=a+bxy

[_linear]

1.468

4854

x2y=(bx+a)y

[_separable]

1.385

4855

x2y+x(x+2)y=x(1e2x)2

[_linear]

1.797

4856

x2y+2x(1x)y=ex(2ex1)

[_linear]

1.974

4857

x2y+x2+xy+y2=0

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.646

4858

x2y=(1+2xy)2

[[_homogeneous, ‘class C‘], _rational, _Riccati]

2.904

4859

x2y=a+by2

[_separable]

2.928

4860

x2y=(x+ay)y

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.139

4861

x2y=(ax+by)y

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

38.032

4862

x2y+ax2+bxy+cy2=0

[[_homogeneous, ‘class A‘], _rational, _Riccati]

139.107

4863

x2y=a+bxn+x2y2

[_rational, _Riccati]

2.743

4864

x2y+2+xy(4+xy)=0

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.654

4865

x2y+2+ax(1xy)x2y2=0

[_rational, _Riccati]

2.263

4866

x2y=a+bx2y2

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

2.012

4867

x2y=a+bxn+cx2y2

[_rational, _Riccati]

2.840

4868

x2y=a+bxy+cx2y2

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.262

4869

x2y=a+bxy+cx4y2

[_rational, _Riccati]

3.449

4870

x2y+(x2+y2x)y=0

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.044

4871

x2y=2y(xy2)

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.589

4872

x2y=ax2y2ay3

[_rational, _Abel]

1.212

4873

x2y+ay2+bx2y3=0

[_rational, _Abel]

1.529

4874

x2y=(ax+by3)y

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.859

4875

x2y+xy+y=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6.669

4876

x2y=sec(y)+3xtan(y)

[‘y=_G(x,y’)‘]

8.035

4877

(x2+1)y=1x2+y

[_linear]

1.438

4878

(x2+1)y+1=xy

[_linear]

1.261

4879

(x2+1)y=5xy

[_linear]

1.327

4880

(x2+1)y+a+xy=0

[_linear]

1.213

4881

(x2+1)y+axy=0

[_linear]

2.840

4882

(x2+1)y+axy=0

[_linear]

1.185

4883

(x2+1)yx+xy=0

[_separable]

1.242

4884

(x2+1)yx2+xy=0

[_linear]

1.315

4885

(x2+1)y+x2+xy=0

[_linear]

1.298

4886

(x2+1)y=x(x2+1)xy

[_linear]

3.838

4887

(x2+1)y=x(3x2y)

[_linear]

3.709

4888

(x2+1)y+2xy=0

[_separable]

1.198

4889

(x2+1)y=2x(xy)

[_linear]

1.138

4890

(x2+1)y=2x(x2+1)2+2xy

[_linear]

1.661

4891

(x2+1)y+cos(x)=2xy

[_linear]

2.527

4892

(x2+1)y=tan(x)2xy

[_linear]

1.729

4893

(x2+1)y=a+4xy

[_linear]

1.275

4894

(x2+1)y=(2bx+a)y

[_separable]

1.746

4895

(x2+1)y=1+y2

[_separable]

1.879

4896

(x2+1)y=1y2

[_separable]

1.829

4897

(x2+1)y=1(2xy)y

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.780

4898

(x2+1)y=n(12xy+y2)

[_rational, _Riccati]

4.256

4899

(x2+1)y+xy(1y)=0

[_separable]

3.335

4900

(x2+1)y=xy(1+ay)

[_separable]

3.136