2.2.49 Problems 4801 to 4900

Table 2.99: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4801

\[ {}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

110.914

4802

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

105.948

4803

\[ {}x \left (x^{2}+a x y+2 y^{2}\right ) y^{\prime } = \left (a x +2 y\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

442.716

4804

\[ {}3 x y^{2} y^{\prime } = 2 x -y^{3} \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

11.348

4805

\[ {}\left (1-4 x +3 x y^{2}\right ) y^{\prime } = \left (2-y^{2}\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4.759

4806

\[ {}x \left (x -3 y^{2}\right ) y^{\prime }+\left (2 x -y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

9.446

4807

\[ {}3 x \left (x +y^{2}\right ) y^{\prime }+x^{3}-3 y x -2 y^{3} = 0 \]

[_rational]

3.017

4808

\[ {}x \left (x^{3}-3 x^{3} y+4 y^{2}\right ) y^{\prime } = 6 y^{3} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.335

4809

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9.662

4810

\[ {}x \left (x +6 y^{2}\right ) y^{\prime }+y x -3 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7.743

4811

\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

101.522

4812

\[ {}x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12.094

4813

\[ {}x^{2} y^{2} y^{\prime }+1-x +x^{3} = 0 \]

[_separable]

6.971

4814

\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = x y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

4.927

4815

\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = \left (y x +1\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.589

4816

\[ {}x \left (1+x y^{2}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15.353

4817

\[ {}x \left (1+x y^{2}\right ) y^{\prime } = \left (2-3 x y^{2}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

24.150

4818

\[ {}x^{2} \left (a +y\right )^{2} y^{\prime } = \left (x^{2}+1\right ) \left (y^{2}+a^{2}\right ) \]

[_separable]

3.990

4819

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \]

[_separable]

42.809

4820

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y\right )^{2} = 0 \]

[_separable]

7.360

4821

\[ {}\left (1-x^{3}+6 x^{2} y^{2}\right ) y^{\prime } = \left (6+3 y x -4 y^{3}\right ) x \]

[_exact, _rational]

3.312

4822

\[ {}x \left (3+5 x -12 x y^{2}+4 x^{2} y\right ) y^{\prime }+\left (3+10 x -8 x y^{2}+6 x^{2} y\right ) y = 0 \]

[_exact, _rational]

3.256

4823

\[ {}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

11.385

4824

\[ {}x \left (1-y x \right )^{2} y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9.188

4825

\[ {}\left (1-x^{4} y^{2}\right ) y^{\prime } = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

16.896

4826

\[ {}\left (3 x -y^{3}\right ) y^{\prime } = x^{2}-3 y \]

[_exact, _rational]

6.366

4827

\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

64.339

4828

\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

924.457

4829

\[ {}\left (x -x^{2} y-y^{3}\right ) y^{\prime } = x^{3}-y+x y^{2} \]

[_exact, _rational]

2.575

4830

\[ {}\left (a^{2} x +\left (x^{2}-y^{2}\right ) y\right ) y^{\prime }+x \left (x^{2}-y^{2}\right ) = a^{2} y \]

[_rational]

3.621

4831

\[ {}\left (a +x^{2}+y^{2}\right ) y y^{\prime } = x \left (a -x^{2}-y^{2}\right ) \]

[_exact, _rational]

7.403

4832

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

150.886

4833

\[ {}\left (a -3 x^{2}-y^{2}\right ) y y^{\prime }+x \left (a -x^{2}+y^{2}\right ) = 0 \]

[_rational]

1.384

4834

\[ {}2 y^{3} y^{\prime } = x^{3}-x y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

71.082

4835

\[ {}y \left (1+2 y^{2}\right ) y^{\prime } = x \left (2 x^{2}+1\right ) \]

[_separable]

9.724

4836

\[ {}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

140.658

4837

\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

224.812

4838

\[ {}\left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3} = 0 \]

[_rational]

1.397

4839

\[ {}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

170.764

4840

\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

46.563

4841

\[ {}x y^{3} y^{\prime } = \left (-x^{2}+1\right ) \left (1+y^{2}\right ) \]

[_separable]

10.303

4842

\[ {}x \left (x -y^{3}\right ) y^{\prime } = \left (3 x +y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

14.672

4843

\[ {}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18.313

4844

\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

48.306

4845

\[ {}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

26.807

4846

\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

22.589

4847

\[ {}x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

27.250

4848

\[ {}x \left (x +y+2 y^{3}\right ) y^{\prime } = \left (x -y\right ) y \]

[_rational]

4.569

4849

\[ {}\left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.496

4850

\[ {}x \left (1-2 x y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y\right ) y = 0 \]

[_rational]

7.532

4851

\[ {}x \left (2-x y^{2}-2 x y^{3}\right ) y^{\prime }+1+2 y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4.294

4852

\[ {}\left (2-10 x^{2} y^{3}+3 y^{2}\right ) y^{\prime } = x \left (1+5 y^{4}\right ) \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.110

4853

\[ {}x \left (a +b x y^{3}\right ) y^{\prime }+\left (a +c \,x^{3} y\right ) y = 0 \]

[_rational]

9.026

4854

\[ {}x \left (1-2 x^{2} y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y^{2}\right ) y = 0 \]

[_rational]

2.802

4855

\[ {}x \left (1-y x \right ) \left (1-x^{2} y^{2}\right ) y^{\prime }+\left (y x +1\right ) \left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

8.875

4856

\[ {}\left (x^{2}-y^{4}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class G‘], _rational]

32.625

4857

\[ {}\left (x^{3}-y^{4}\right ) y^{\prime } = 3 x^{2} y \]

[[_homogeneous, ‘class G‘], _rational]

15.151

4858

\[ {}\left (a^{2} x^{2}+\left (x^{2}+y^{2}\right )^{2}\right ) y^{\prime } = a^{2} x y \]

[_rational]

15.641

4859

\[ {}2 \left (x -y^{4}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

32.171

4860

\[ {}\left (4 x -x y^{3}-2 y^{4}\right ) y^{\prime } = \left (2+y^{3}\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6.120

4861

\[ {}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

98.832

4862

\[ {}\left (x +2 y+2 x^{2} y^{3}+x y^{4}\right ) y^{\prime }+\left (1+y^{4}\right ) y = 0 \]

[_rational]

1.367

4863

\[ {}2 x \left (x^{3}+y^{4}\right ) y^{\prime } = \left (x^{3}+2 y^{4}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

36.226

4864

\[ {}x \left (1-x^{2} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

37.668

4865

\[ {}\left (x^{2}-y^{5}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class G‘], _rational]

16.797

4866

\[ {}x \left (x^{3}+y^{5}\right ) y^{\prime } = \left (x^{3}-y^{5}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

14.106

4867

\[ {}x^{3} \left (1+5 x^{3} y^{7}\right ) y^{\prime }+\left (3 x^{5} y^{5}-1\right ) y^{3} = 0 \]

[_rational]

7.533

4868

\[ {}\left (1+a \left (x +y\right )\right )^{n} y^{\prime }+a \left (x +y\right )^{n} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

18.178

4869

\[ {}x \left (a +x y^{n}\right ) y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6.521

4870

\[ {}f \left (x \right ) y^{m} y^{\prime }+g \left (x \right ) y^{m +1}+h \left (x \right ) y^{n} = 0 \]

[_Bernoulli]

2.008

4871

\[ {}y^{\prime } \sqrt {b^{2}+y^{2}} = \sqrt {a^{2}+x^{2}} \]

[_separable]

5.191

4872

\[ {}y^{\prime } \sqrt {-y^{2}+b^{2}} = \sqrt {a^{2}-x^{2}} \]

[_separable]

15.339

4873

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

109.036

4874

\[ {}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12.037

4875

\[ {}y^{\prime } \sqrt {y x}+x -y = \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

64.503

4876

\[ {}\left (x -2 \sqrt {y x}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

282.022

4877

\[ {}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2} \]

[_separable]

108.478

4878

\[ {}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2} \]

[_separable]

69.133

4879

\[ {}\left (x -\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

182.233

4880

\[ {}x \left (1-\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = y \]

[‘y=_G(x,y’)‘]

1.649

4881

\[ {}x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime }+y \sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

284.924

4882

\[ {}x y \left (x +\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = x y^{2}-\left (x^{2}-y^{2}\right )^{{3}/{2}} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

202.880

4883

\[ {}\left (x \sqrt {1+x^{2}+y^{2}}-y \left (x^{2}+y^{2}\right )\right ) y^{\prime } = x \left (x^{2}+y^{2}\right )+y \sqrt {1+x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries]]

123.090

4884

\[ {}y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right ) = 0 \]

unknown

203.183

4885

\[ {}\left (a \cos \left (b x +a y\right )-b \sin \left (a x +b y\right )\right ) y^{\prime }+b \cos \left (b x +a y\right )-a \sin \left (a x +b y\right ) = 0 \]

[_exact]

69.570

4886

\[ {}\left (x +\cos \left (x \right ) \sec \left (y\right )\right ) y^{\prime }+\tan \left (y\right )-y \sin \left (x \right ) \sec \left (y\right ) = 0 \]

[NONE]

165.505

4887

\[ {}\left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries]]

64.622

4888

\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

105.504

4889

\[ {}\left ({\mathrm e}^{x}+x \,{\mathrm e}^{y}\right ) y^{\prime }+y \,{\mathrm e}^{x}+{\mathrm e}^{y} = 0 \]

[_exact]

93.881

4890

\[ {}\left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

25.061

4891

\[ {}\left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right ) = 0 \]

[_exact]

210.702

4892

\[ {}y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right ) = 0 \]

[_separable]

141.960

4893

\[ {}{y^{\prime }}^{2} = a \,x^{n} \]

[_quadrature]

1.073

4894

\[ {}{y^{\prime }}^{2} = y \]

[_quadrature]

3.152

4895

\[ {}{y^{\prime }}^{2} = x -y \]

[[_homogeneous, ‘class C‘], _dAlembert]

14.211

4896

\[ {}{y^{\prime }}^{2} = y+x^{2} \]

[[_homogeneous, ‘class G‘]]

200.229

4897

\[ {}{y^{\prime }}^{2}+x^{2} = 4 y \]

[[_homogeneous, ‘class G‘]]

264.116

4898

\[ {}{y^{\prime }}^{2}+3 x^{2} = 8 y \]

[[_homogeneous, ‘class G‘]]

258.399

4899

\[ {}{y^{\prime }}^{2}+a \,x^{2}+b y = 0 \]

[[_homogeneous, ‘class G‘]]

250.158

4900

\[ {}{y^{\prime }}^{2} = 1+y^{2} \]

[_quadrature]

1.499