| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
{y^{\prime }}^{2}+y^{\prime \prime \prime } y^{\prime }&=2 {y^{\prime \prime }}^{2} \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
5.047 |
|
| \begin{align*}
y^{\prime } y^{\prime \prime }&=a x {y^{\prime }}^{5}+3 {y^{\prime \prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✗ |
✗ |
✗ |
✗ |
135.398 |
|
| \begin{align*}
2 y^{\prime \prime \prime } y^{\prime }&=2 {y^{\prime \prime }}^{2} \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✗ |
0.556 |
|
| \begin{align*}
\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }&=3 y^{\prime } {y^{\prime \prime }}^{2} \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✗ |
0.769 |
|
| \begin{align*}
\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }&=\left (a +3 y^{\prime }\right ) {y^{\prime \prime }}^{2} \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✗ |
26.295 |
|
| \begin{align*}
{y^{\prime }}^{3} y^{\prime \prime \prime }&=1 \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
✓ |
✓ |
✗ |
2.331 |
|
| \begin{align*}
y^{\prime \prime } y^{\prime \prime \prime }&=2 \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✗ |
0.695 |
|
| \begin{align*}
y^{\prime \prime } y^{\prime \prime \prime }&=a \sqrt {1+b^{2} {y^{\prime \prime }}^{2}} \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
✓ |
✓ |
✗ |
7.289 |
|
| \begin{align*}
2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\
\end{align*} |
[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✗ |
1.318 |
|
| \begin{align*}
1-{y^{\prime \prime }}^{2}+2 x y^{\prime \prime } y^{\prime \prime \prime }+\left (-x^{2}+1\right ) {y^{\prime \prime \prime }}^{2}&=0 \\
\end{align*} |
[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.964 |
|
| \begin{align*}
\sqrt {1+{y^{\prime \prime }}^{2}}\, \left (1-y^{\prime \prime \prime }\right )&=y^{\prime \prime } y^{\prime \prime \prime } \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
✓ |
✓ |
✓ |
6.943 |
|
| \begin{align*}
3 y^{\prime \prime } y^{\prime \prime \prime \prime }&=5 {y^{\prime \prime \prime }}^{2} \\
\end{align*} |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✗ |
1.208 |
|
| \begin{align*}
40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )}&=0 \\
\end{align*} |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.093 |
|
| \begin{align*}
y^{\prime }&=\frac {x y}{x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.314 |
|
| \begin{align*}
y^{\prime }&=\frac {-3+x +y}{x -y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
11.898 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +y-1}{4 x +2 y+5} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.546 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x +1}&=\left (x +1\right )^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.239 |
|
| \begin{align*}
y^{\prime }+y x&=x^{3} y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.691 |
|
| \begin{align*}
\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.101 |
|
| \begin{align*}
y+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.370 |
|
| \begin{align*}
y^{2} \left (1+{y^{\prime }}^{2}\right )&=R^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.789 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {a y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \\
\end{align*} |
[_Clairaut] |
✓ |
✓ |
✓ |
✗ |
15.929 |
|
| \begin{align*}
y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.525 |
|
| \begin{align*}
x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.397 |
|
| \begin{align*}
y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.516 |
|
| \begin{align*}
x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.260 |
|
| \begin{align*}
1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.898 |
|
| \begin{align*}
\cos \left (y\right ) \sin \left (x \right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.885 |
|
| \begin{align*}
\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
35.103 |
|
| \begin{align*}
\left (-x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.658 |
|
| \begin{align*}
\left (-x +2 \sqrt {y x}\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
13.169 |
|
| \begin{align*}
y^{\prime } x -y-\sqrt {x^{2}+y^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.130 |
|
| \begin{align*}
x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.313 |
|
| \begin{align*}
\left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.460 |
|
| \begin{align*}
2 x -y+1+\left (-1+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
16.784 |
|
| \begin{align*}
3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
122.964 |
|
| \begin{align*}
y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{2 x \left (x^{2}+1\right )} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.105 |
|
| \begin{align*}
x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=a \,x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.367 |
|
| \begin{align*}
y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
5.586 |
|
| \begin{align*}
y^{\prime }+\cos \left (x \right ) y&=\frac {\sin \left (2 x \right )}{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.721 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y&=\arctan \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.557 |
|
| \begin{align*}
\left (-x^{2}+1\right ) z^{\prime }-x z&=a x z^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.673 |
|
| \begin{align*}
3 z^{2} z^{\prime }-a z^{3}&=x +1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.413 |
|
| \begin{align*}
z^{\prime }+2 x z&=2 a \,x^{3} z^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.570 |
|
| \begin{align*}
z^{\prime }+z \cos \left (x \right )&=z^{n} \sin \left (2 x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.135 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.826 |
|
| \begin{align*}
x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| \begin{align*}
1+\frac {y^{2}}{x^{2}}-\frac {2 y y^{\prime }}{x}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.417 |
|
| \begin{align*}
\frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
x +y y^{\prime }+\frac {x y^{\prime }}{x^{2}+y^{2}}-\frac {y}{x^{2}+y^{2}}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
✓ |
✓ |
✗ |
0.232 |
|
| \begin{align*}
1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.344 |
|
| \begin{align*}
{\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| \begin{align*}
n \cos \left (x n +m y\right )-m \sin \left (x m +n y\right )+\left (m \cos \left (x n +m y\right )-n \sin \left (x m +n y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
0.342 |
|
| \begin{align*}
\frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _exact] |
✓ |
✓ |
✓ |
✗ |
0.414 |
|
| \begin{align*}
2 y x +\left (y^{2}-2 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
\frac {1}{x}+\frac {y^{\prime }}{y}+\frac {2}{y}-\frac {2 y^{\prime }}{x}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.475 |
|
| \begin{align*}
-y+y^{\prime } x&=\sqrt {x^{2}+y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.263 |
|
| \begin{align*}
\left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.172 |
|
| \begin{align*}
x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.176 |
|
| \begin{align*}
y^{2}+\left (y x +x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
107.291 |
|
| \begin{align*}
\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y+\left (x \cos \left (\frac {y}{x}\right )-y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.540 |
|
| \begin{align*}
\left (y^{2} x^{2}+y x \right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
\left (x^{3} y^{3}+y^{2} x^{2}+y x +1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-y x +1\right ) x y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| \begin{align*}
2 y y^{\prime }+2 x +x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
x^{2}+y^{2}-2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.479 |
|
| \begin{align*}
2 y x +\left (y^{2}-3 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.225 |
|
| \begin{align*}
y+\left (-x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y^{\prime } x -a y+y^{2}&=x^{-2 a} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
1.055 |
|
| \begin{align*}
y^{\prime } x -a y+y^{2}&=x^{-\frac {2 a}{3}} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
3.341 |
|
| \begin{align*}
u^{\prime }+u^{2}&=\frac {c}{x^{{4}/{3}}} \\
\end{align*} |
[_rational, [_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
0.356 |
|
| \begin{align*}
u^{\prime }+b u^{2}&=\frac {c}{x^{4}} \\
\end{align*} |
[_rational, [_Riccati, _special]] |
✓ |
✓ |
✓ |
✓ |
0.315 |
|
| \begin{align*}
u^{\prime }-u^{2}&=\frac {2}{x^{{8}/{3}}} \\
\end{align*} |
[_rational, [_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
0.466 |
|
| \begin{align*}
\frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}}&=-1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.931 |
|
| \begin{align*}
{y^{\prime }}^{2}-5 y^{\prime }+6&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| \begin{align*}
{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
{y^{\prime }}^{2}&=\frac {1-x}{x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| \begin{align*}
{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.586 |
|
| \begin{align*}
y&=a y^{\prime }+b {y^{\prime }}^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.177 |
|
| \begin{align*}
x&=a y^{\prime }+b {y^{\prime }}^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.254 |
|
| \begin{align*}
y&=\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
9.756 |
|
| \begin{align*}
x&=\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
9.475 |
|
| \begin{align*}
y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.334 |
|
| \begin{align*}
x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| \begin{align*}
1+{y^{\prime }}^{2}&=\frac {\left (a +x \right )^{2}}{2 a x +x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
3.653 |
|
| \begin{align*}
y&=y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
25.269 |
|
| \begin{align*}
y&=y^{\prime } x +a x \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
65.090 |
|
| \begin{align*}
x -y y^{\prime }&=a {y^{\prime }}^{2} \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
141.253 |
|
| \begin{align*}
y y^{\prime }+x&=a \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
58.769 |
|
| \begin{align*}
y y^{\prime }&=x +y^{2}-y^{2} {y^{\prime }}^{2} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.909 |
|
| \begin{align*}
y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}}&=x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.388 |
|
| \begin{align*}
y-2 y^{\prime } x&=x {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.933 |
|
| \begin{align*}
\frac {-y^{\prime } x +y}{y^{\prime }+y^{2}}&=\frac {-y^{\prime } x +y}{1+x^{2} y^{\prime }} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| \begin{align*}
2 y x +\left (x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.218 |
|
| \begin{align*}
\left (x +\sqrt {y^{2}-y x}\right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
173.227 |
|
| \begin{align*}
x +y-\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.411 |
|
| \begin{align*}
y^{\prime } x -y-x \sin \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.324 |
|
| \begin{align*}
2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.495 |
|
| \begin{align*}
y^{2}+\left (x \sqrt {y^{2}-x^{2}}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
24.326 |
|