2.2.69 Problems 6801 to 6900

Table 2.151: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

6801

\begin{align*} {y^{\prime }}^{2}+y^{\prime \prime \prime } y^{\prime }&=2 {y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

5.047

6802

\begin{align*} y^{\prime } y^{\prime \prime }&=a x {y^{\prime }}^{5}+3 {y^{\prime \prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

135.398

6803

\begin{align*} 2 y^{\prime \prime \prime } y^{\prime }&=2 {y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.556

6804

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }&=3 y^{\prime } {y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.769

6805

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }&=\left (a +3 y^{\prime }\right ) {y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

26.295

6806

\begin{align*} {y^{\prime }}^{3} y^{\prime \prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

2.331

6807

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.695

6808

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }&=a \sqrt {1+b^{2} {y^{\prime \prime }}^{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

7.289

6809

\begin{align*} 2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1.318

6810

\begin{align*} 1-{y^{\prime \prime }}^{2}+2 x y^{\prime \prime } y^{\prime \prime \prime }+\left (-x^{2}+1\right ) {y^{\prime \prime \prime }}^{2}&=0 \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

0.964

6811

\begin{align*} \sqrt {1+{y^{\prime \prime }}^{2}}\, \left (1-y^{\prime \prime \prime }\right )&=y^{\prime \prime } y^{\prime \prime \prime } \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

6.943

6812

\begin{align*} 3 y^{\prime \prime } y^{\prime \prime \prime \prime }&=5 {y^{\prime \prime \prime }}^{2} \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

1.208

6813

\begin{align*} 40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )}&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

0.093

6814

\begin{align*} y^{\prime }&=\frac {x y}{x^{2}-y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.314

6815

\begin{align*} y^{\prime }&=\frac {-3+x +y}{x -y-1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.898

6816

\begin{align*} y^{\prime }&=\frac {2 x +y-1}{4 x +2 y+5} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.546

6817

\begin{align*} y^{\prime }-\frac {2 y}{x +1}&=\left (x +1\right )^{2} \\ \end{align*}

[_linear]

2.239

6818

\begin{align*} y^{\prime }+y x&=x^{3} y^{3} \\ \end{align*}

[_Bernoulli]

1.691

6819

\begin{align*} \frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

6.101

6820

\begin{align*} y+x y^{2}-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.370

6821

\begin{align*} y^{2} \left (1+{y^{\prime }}^{2}\right )&=R^{2} \\ \end{align*}

[_quadrature]

0.789

6822

\begin{align*} y&=y^{\prime } x +\frac {a y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \\ \end{align*}

[_Clairaut]

15.929

6823

\begin{align*} y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.525

6824

\begin{align*} x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}

[_separable]

2.397

6825

\begin{align*} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.516

6826

\begin{align*} x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2}&=0 \\ \end{align*}

[_separable]

4.260

6827

\begin{align*} 1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=0 \\ \end{align*}

[_separable]

3.898

6828

\begin{align*} \cos \left (y\right ) \sin \left (x \right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.885

6829

\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

35.103

6830

\begin{align*} \left (-x +y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.658

6831

\begin{align*} \left (-x +2 \sqrt {y x}\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

13.169

6832

\begin{align*} y^{\prime } x -y-\sqrt {x^{2}+y^{2}}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.130

6833

\begin{align*} x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.313

6834

\begin{align*} \left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.460

6835

\begin{align*} 2 x -y+1+\left (-1+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16.784

6836

\begin{align*} 3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

122.964

6837

\begin{align*} y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{2 x \left (x^{2}+1\right )} \\ \end{align*}

[_linear]

2.105

6838

\begin{align*} x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=a \,x^{3} \\ \end{align*}

[_linear]

2.367

6839

\begin{align*} y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \\ \end{align*}

[_linear]

5.586

6840

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=\frac {\sin \left (2 x \right )}{2} \\ \end{align*}

[_linear]

3.721

6841

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+y&=\arctan \left (x \right ) \\ \end{align*}

[_linear]

3.557

6842

\begin{align*} \left (-x^{2}+1\right ) z^{\prime }-x z&=a x z^{2} \\ \end{align*}

[_separable]

6.673

6843

\begin{align*} 3 z^{2} z^{\prime }-a z^{3}&=x +1 \\ \end{align*}

[_rational, _Bernoulli]

2.413

6844

\begin{align*} z^{\prime }+2 x z&=2 a \,x^{3} z^{3} \\ \end{align*}

[_Bernoulli]

2.570

6845

\begin{align*} z^{\prime }+z \cos \left (x \right )&=z^{n} \sin \left (2 x \right ) \\ \end{align*}

[_Bernoulli]

6.135

6846

\begin{align*} y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\ \end{align*}

[_Bernoulli]

4.826

6847

\begin{align*} x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.245

6848

\begin{align*} 1+\frac {y^{2}}{x^{2}}-\frac {2 y y^{\prime }}{x}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

0.417

6849

\begin{align*} \frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.444

6850

\begin{align*} x +y y^{\prime }+\frac {x y^{\prime }}{x^{2}+y^{2}}-\frac {y}{x^{2}+y^{2}}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _exact, _rational]

0.232

6851

\begin{align*} 1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

0.344

6852

\begin{align*} {\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

0.616

6853

\begin{align*} n \cos \left (x n +m y\right )-m \sin \left (x m +n y\right )+\left (m \cos \left (x n +m y\right )-n \sin \left (x m +n y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

0.342

6854

\begin{align*} \frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _exact]

0.414

6855

\begin{align*} 2 y x +\left (y^{2}-2 x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.398

6856

\begin{align*} \frac {1}{x}+\frac {y^{\prime }}{y}+\frac {2}{y}-\frac {2 y^{\prime }}{x}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.475

6857

\begin{align*} -y+y^{\prime } x&=\sqrt {x^{2}+y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.263

6858

\begin{align*} \left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.172

6859

\begin{align*} x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.176

6860

\begin{align*} y^{2}+\left (y x +x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

107.291

6861

\begin{align*} \left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y+\left (x \cos \left (\frac {y}{x}\right )-y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

0.540

6862

\begin{align*} \left (y^{2} x^{2}+y x \right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.507

6863

\begin{align*} \left (x^{3} y^{3}+y^{2} x^{2}+y x +1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-y x +1\right ) x y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.456

6864

\begin{align*} 2 y y^{\prime }+2 x +x^{2}+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

0.376

6865

\begin{align*} x^{2}+y^{2}-2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.479

6866

\begin{align*} 2 y x +\left (y^{2}-3 x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.225

6867

\begin{align*} y+\left (-x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.342

6868

\begin{align*} y^{\prime } x -a y+y^{2}&=x^{-2 a} \\ \end{align*}

[_rational, _Riccati]

1.055

6869

\begin{align*} y^{\prime } x -a y+y^{2}&=x^{-\frac {2 a}{3}} \\ \end{align*}

[_rational, _Riccati]

3.341

6870

\begin{align*} u^{\prime }+u^{2}&=\frac {c}{x^{{4}/{3}}} \\ \end{align*}

[_rational, [_Riccati, _special]]

0.356

6871

\begin{align*} u^{\prime }+b u^{2}&=\frac {c}{x^{4}} \\ \end{align*}

[_rational, [_Riccati, _special]]

0.315

6872

\begin{align*} u^{\prime }-u^{2}&=\frac {2}{x^{{8}/{3}}} \\ \end{align*}

[_rational, [_Riccati, _special]]

0.466

6873

\begin{align*} \frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}}&=-1 \\ \end{align*}

[_separable]

7.931

6874

\begin{align*} {y^{\prime }}^{2}-5 y^{\prime }+6&=0 \\ \end{align*}

[_quadrature]

0.188

6875

\begin{align*} {y^{\prime }}^{2}-\frac {a^{2}}{x^{2}}&=0 \\ \end{align*}

[_quadrature]

0.204

6876

\begin{align*} {y^{\prime }}^{2}&=\frac {1-x}{x} \\ \end{align*}

[_quadrature]

0.305

6877

\begin{align*} {y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.586

6878

\begin{align*} y&=a y^{\prime }+b {y^{\prime }}^{2} \\ \end{align*}

[_quadrature]

1.177

6879

\begin{align*} x&=a y^{\prime }+b {y^{\prime }}^{2} \\ \end{align*}

[_quadrature]

0.254

6880

\begin{align*} y&=\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \\ \end{align*}

[_quadrature]

9.756

6881

\begin{align*} x&=\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \\ \end{align*}

[_quadrature]

9.475

6882

\begin{align*} y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x}&=0 \\ \end{align*}

[_quadrature]

1.334

6883

\begin{align*} x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2}&=0 \\ \end{align*}

[_quadrature]

0.604

6884

\begin{align*} 1+{y^{\prime }}^{2}&=\frac {\left (a +x \right )^{2}}{2 a x +x^{2}} \\ \end{align*}

[_quadrature]

0.360

6885

\begin{align*} y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.236

6886

\begin{align*} y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

3.653

6887

\begin{align*} y&=y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

25.269

6888

\begin{align*} y&=y^{\prime } x +a x \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

65.090

6889

\begin{align*} x -y y^{\prime }&=a {y^{\prime }}^{2} \\ \end{align*}

[_dAlembert]

141.253

6890

\begin{align*} y y^{\prime }+x&=a \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

58.769

6891

\begin{align*} y y^{\prime }&=x +y^{2}-y^{2} {y^{\prime }}^{2} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

0.909

6892

\begin{align*} y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}}&=x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

2.388

6893

\begin{align*} y-2 y^{\prime } x&=x {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.933

6894

\begin{align*} \frac {-y^{\prime } x +y}{y^{\prime }+y^{2}}&=\frac {-y^{\prime } x +y}{1+x^{2} y^{\prime }} \\ \end{align*}

[_separable]

1.030

6895

\begin{align*} 2 y x +\left (x^{2}+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

6.218

6896

\begin{align*} \left (x +\sqrt {y^{2}-y x}\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

173.227

6897

\begin{align*} x +y-\left (x -y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.411

6898

\begin{align*} y^{\prime } x -y-x \sin \left (\frac {y}{x}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.324

6899

\begin{align*} 2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10.495

6900

\begin{align*} y^{2}+\left (x \sqrt {y^{2}-x^{2}}-y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _dAlembert]

24.326