2.2.76 Problems 7501 to 7600

Table 2.153: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7501

\[ {}x y^{\prime \prime }+y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

0.820

7502

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

1.046

7503

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.779

7504

\[ {}4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0 \]

[[_Emden, _Fowler]]

0.976

7505

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.911

7506

\[ {}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.944

7507

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.086

7508

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

[_Laguerre]

1.010

7509

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.906

7510

\[ {}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.113

7511

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.079

7512

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.797

7513

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.920

7514

\[ {}x y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.245

7515

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.125

7516

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.783

7517

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.796

7518

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.045

7519

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.936

7520

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{t}+\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.885

7521

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.096

7522

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.155

7523

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.836

7524

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

0.793

7525

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.743

7526

\[ {}16 x^{2} y^{\prime \prime }+16 y^{\prime } x +\left (16 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.830

7527

\[ {}x y^{\prime \prime }+y^{\prime }+y x = 0 \]

[_Lienard]

0.790

7528

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

[_Bessel]

0.872

7529

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.915

7530

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.968

7531

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.879

7532

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.020

7533

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

0.756

7534

\[ {}x y^{\prime \prime }+3 y^{\prime }+y x = 0 \]

[_Lienard]

0.814

7535

\[ {}x y^{\prime \prime }-y^{\prime }+y x = 0 \]

[_Lienard]

0.792

7536

\[ {}x y^{\prime \prime }-5 y^{\prime }+y x = 0 \]

[_Lienard]

0.826

7537

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.575

7538

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.823

7539

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

1.569

7540

\[ {}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (x^{6}-36\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.955

7541

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.909

7542

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

[[_Emden, _Fowler]]

1.059

7543

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.780

7544

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.557

7545

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.619

7546

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.094

7547

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.104

7548

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.620

7549

\[ {}\left (x -1\right ) y^{\prime \prime }+3 y = 0 \]

[[_Emden, _Fowler]]

0.673

7550

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.575

7551

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.958

7552

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.096

7553

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.582

7554

\[ {}\left (x +2\right ) y^{\prime \prime }+3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.618

7555

\[ {}\left (1-2 \sin \left (x \right )\right ) y^{\prime \prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.107

7556

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.676

7557

\[ {}x y^{\prime \prime }+\left (1-\cos \left (x \right )\right ) y^{\prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

2.953

7558

\[ {}\left ({\mathrm e}^{x}-1-x \right ) y^{\prime \prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.960

7559

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 y x = 10 x^{3}-2 x +5 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.689

7560

\[ {}y^{\prime }-y = 1 \]
i.c.

[_quadrature]

0.238

7561

\[ {}2 y^{\prime }+y = 0 \]
i.c.

[_quadrature]

0.222

7562

\[ {}y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

0.262

7563

\[ {}y^{\prime }-y = 2 \cos \left (5 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.321

7564

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.293

7565

\[ {}y^{\prime \prime }-4 y^{\prime } = 6 \,{\mathrm e}^{3 t}-3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _missing_y]]

0.342

7566

\[ {}y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.509

7567

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.345

7568

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.268

7569

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.407

7570

\[ {}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.405

7571

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.350

7572

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

0.253

7573

\[ {}y^{\prime }-y = 1+t \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

0.262

7574

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.297

7575

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.273

7576

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.312

7577

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.331

7578

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.322

7579

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.477

7580

\[ {}y^{\prime \prime }-y = {\mathrm e}^{t} \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.349

7581

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 1+t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.441

7582

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.242

7583

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.168

7584

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.319

7585

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.363

7586

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.446

7587

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.545

7588

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \operatorname {Heaviside}\left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.502

7589

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.347

7590

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.530

7591

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -4\right )+\operatorname {Heaviside}\left (t -6\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.375

7592

\[ {}y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.334

7593

\[ {}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.340

7594

\[ {}y^{\prime \prime }+9 y = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

7595

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.359

7596

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

7597

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

7598

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.151

7599

\[ {}2 y^{\prime \prime }+t y^{\prime }-2 y = 10 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.071

7600

\[ {}y^{\prime \prime }+y = \sin \left (t \right )+t \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.440