2.2.76 Problems 7501 to 7600

Table 2.153: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7501

\[ {}y^{\prime }-x y = 0 \]

[_separable]

0.154

7502

\[ {}y^{\prime }+x y = x \]

[_separable]

0.354

7503

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

0.195

7504

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

0.189

7505

\[ {}2 y-x^{3} = x y^{\prime } \]

[_linear]

0.144

7506

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

0.150

7507

\[ {}x y^{\prime }-3 y = x^{4} \]

[_linear]

0.138

7508

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right ) \]

[_linear]

0.180

7509

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

0.204

7510

\[ {}y-x +x y \cot \left (x \right )+x y^{\prime } = 0 \]

[_linear]

0.219

7511

\[ {}y^{\prime }-x y = 0 \]
i.c.

[_separable]

0.291

7512

\[ {}y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \]
i.c.

[_linear]

0.332

7513

\[ {}x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \]
i.c.

[_linear]

0.237

7514

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]
i.c.

[_linear]

0.274

7515

\[ {}y^{\prime }+4 y = {\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

0.306

7516

\[ {}x^{2} y^{\prime }+x y = 2 x \]
i.c.

[_separable]

0.278

7517

\[ {}x y^{\prime }+y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.277

7518

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

53.157

7519

\[ {}x y^{\prime }+y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.270

7520

\[ {}y^{\prime }+x y = x y^{4} \]

[_separable]

2.426

7521

\[ {}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.125

7522

\[ {}y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

1.161

7523

\[ {}x y^{\prime }+2 = x^{3} \left (y-1\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2.292

7524

\[ {}x y^{\prime } = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

1.664

7525

\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

[_linear]

2.861

7526

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.378

7527

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

40.201

7528

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.179

7529

\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.443

7530

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

1.611

7531

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.606

7532

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

28.066

7533

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

0.270

7534

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

1.434

7535

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

41.481

7536

\[ {}\frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1 \]

[_exact, _rational, _Riccati]

1.375

7537

\[ {}2 x y^{4}+\sin \left (y\right )+\left (4 y^{3} x^{2}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2.545

7538

\[ {}\frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

2.693

7539

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.754

7540

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

1.920

7541

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

49.583

7542

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

0.445

7543

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1.817

7544

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.601

7545

\[ {}\frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

2.902

7546

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.612

7547

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

70.046

7548

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.335

7549

\[ {}x^{2} y^{\prime } = 3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

[[_homogeneous, ‘class A‘], _dAlembert]

14.376

7550

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.688

7551

\[ {}x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

15.103

7552

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.625

7553

\[ {}x y^{\prime } = 2 x -6 y \]

[_linear]

1.942

7554

\[ {}x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.991

7555

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.162

7556

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.765

7557

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.827

7558

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.256

7559

\[ {}2 x -2 y+\left (y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.882

7560

\[ {}y^{\prime } = \frac {y-1+x}{x +4 y+2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.070

7561

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

1.642

7562

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.676

7563

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.278

7564

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.528

7565

\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.925

7566

\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.232

7567

\[ {}y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )} \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.187

7568

\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.138

7569

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.302

7570

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

0.375

7571

\[ {}x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3.144

7572

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.345

7573

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

0.363

7574

\[ {}y+\left (x -2 y^{3} x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.326

7575

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.372

7576

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.301

7577

\[ {}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

0.345

7578

\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.329

7579

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

0.334

7580

\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

[[_homogeneous, ‘class G‘]]

5.049

7581

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.401

7582

\[ {}x y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

[NONE]

0.095

7583

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3.302

7584

\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

0.519

7585

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.118

7586

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.247

7587

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

1.106

7588

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1.426

7589

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.630

7590

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1.552

7591

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.380

7592

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.239

7593

\[ {}x y^{\prime }+y = x \]

[_linear]

1.813

7594

\[ {}x^{2} y^{\prime }+y = x^{2} \]

[_linear]

0.956

7595

\[ {}x^{2} y^{\prime } = y \]

[_separable]

1.348

7596

\[ {}\sec \left (x \right ) y^{\prime } = \sec \left (y\right ) \]

[_separable]

2.109

7597

\[ {}y^{\prime } = \frac {y^{2}+x^{2}}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.237

7598

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.658

7599

\[ {}2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

1.609

7600

\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.483