2.2.76 Problems 7501 to 7600

Table 2.153: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7501

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.046

7502

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

2.201

7503

\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \]

[_separable]

1.226

7504

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]
i.c.

[_separable]

2.362

7505

\[ {}y^{\prime } x -2 \sqrt {x y} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.435

7506

\[ {}y^{\prime } = \frac {x +y-1}{x -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.622

7507

\[ {}{\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2.000

7508

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

1.499

7509

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.416

7510

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.676

7511

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.220

7512

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

2.811

7513

\[ {}y^{\prime } = -\frac {y}{t}-1-y^{2} \]

[_rational, _Riccati]

1.296

7514

\[ {}x +y y^{\prime } = a {y^{\prime }}^{2} \]

[_dAlembert]

338.901

7515

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

[_quadrature]

1.290

7516

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

0.854

7517

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1.112

7518

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.530

7519

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

2.020

7520

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 1+3 x \]

[[_2nd_order, _with_linear_symmetries]]

1.340

7521

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.322

7522

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.272

7523

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.175

7524

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.448

7525

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

[_Lienard]

3.329

7526

\[ {}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.747

7527

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.713

7528

\[ {}x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.138

7529

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

0.138

7530

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.391

7531

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.513

7532

\[ {}y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

[[_high_order, _missing_y]]

0.243

7533

\[ {}x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.260

7534

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.609

7535

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.940

7536

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.398

7537

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.422

7538

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.692

7539

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.161

7540

\[ {}y^{\prime \prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3.580

7541

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.411

7542

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.923

7543

\[ {}y+\sqrt {x^{2}+y^{2}}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.674

7544

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

0.678

7545

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.528

7546

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.887

7547

\[ {}y \left (x^{2} y^{2}+1\right )+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.117

7548

\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

1.620

7549

\[ {}\frac {1}{y}+\sec \left (\frac {y}{x}\right )-\frac {x y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘]]

17.407

7550

\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \]

[_Bernoulli]

2.919

7551

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.792

7552

\[ {}\left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right ) = \frac {\cos \left (2 \theta \right )}{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4.875

7553

\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.865

7554

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

[[_high_order, _missing_x]]

0.088

7555

\[ {}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_separable]

2.184

7556

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

1.851

7557

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.307

7558

\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.782

7559

\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (x +1\right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.749

7560

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.165

7561

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.243

7562

\[ {}-y+y^{\prime } x = x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.710

7563

\[ {}-y+y^{\prime } x = x \sqrt {x^{2}-y^{2}}\, y^{\prime } \]

[‘y=_G(x,y’)‘]

4.273

7564

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.647

7565

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.481

7566

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }=2 x_{1}-9 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.535

7567

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+3 x_{2} \\ x_{2}^{\prime }=5 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.440

7568

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+3 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+5 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.520

7569

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}+2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.590

7570

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.428

7571

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\ x_{2}^{\prime }=x_{1}-2 x_{2}+3 t \end {array}\right ] \]

system_of_ODEs

0.524

7572

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=16 x_{1}-5 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.555

7573

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-2 x_{2} \\ x_{2}^{\prime }=3 x_{1}-4 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.587

7574

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }=2 x_{1}-9 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.535

7575

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+3 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+5 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.515

7576

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }=2 x_{1}-9 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.534

7577

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=4 x_{1}-2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.589

7578

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}-8 \\ x_{2}^{\prime }=x_{1}+x_{2}+3 \end {array}\right ] \]

system_of_ODEs

0.529

7579

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}-8 \\ x_{2}^{\prime }=x_{1}+x_{2}+3 \end {array}\right ] \]
i.c.

system_of_ODEs

0.701

7580

\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[_quadrature]

0.556

7581

\[ {}y^{\prime \prime } = x +2 \]

[[_2nd_order, _quadrature]]

1.942

7582

\[ {}y^{\prime \prime \prime } = x^{2} \]

[[_3rd_order, _quadrature]]

0.108

7583

\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \]

[_separable]

1.828

7584

\[ {}y^{\prime }+\cos \left (x \right ) y = \sin \left (x \right ) \cos \left (x \right ) \]

[_linear]

1.848

7585

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.276

7586

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2.368

7587

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.756

7588

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

1.316

7589

\[ {}y^{\prime \prime } = 1+3 x \]

[[_2nd_order, _quadrature]]

1.958

7590

\[ {}y^{\prime } = k y \]

[_quadrature]

0.697

7591

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

1.181

7592

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

1.253

7593

\[ {}y^{\prime }-2 y = x^{2}+x \]

[[_linear, ‘class A‘]]

1.264

7594

\[ {}3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

1.360

7595

\[ {}y^{\prime }+3 y = {\mathrm e}^{i x} \]

[[_linear, ‘class A‘]]

0.852

7596

\[ {}y^{\prime }+i y = x \]

[[_linear, ‘class A‘]]

0.938

7597

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

0.759

7598

\[ {}L y^{\prime }+R y = E \sin \left (\omega x \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.530

7599

\[ {}L y^{\prime }+R y = E \,{\mathrm e}^{i \omega x} \]
i.c.

[[_linear, ‘class A‘]]

1.167

7600

\[ {}y^{\prime }+a y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

1.209