# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime } = \left (-1+y\right ) \left (x +1\right )
\] |
[_separable] |
✓ |
1.511 |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
2.043 |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}}
\] |
[_separable] |
✓ |
10.476 |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{x}
\] |
[_separable] |
✓ |
3.955 |
|
\[
{}z^{\prime } = 10^{x +z}
\] |
[_separable] |
✓ |
2.351 |
|
\[
{}x^{\prime }+t = 1
\] |
[_quadrature] |
✓ |
0.449 |
|
\[
{}y^{\prime } = \cos \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
2.666 |
|
\[
{}y^{\prime }-y = 2 x -3
\] |
[[_linear, ‘class A‘]] |
✓ |
1.226 |
|
\[
{}\left (x +2 y\right ) y^{\prime } = 1
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
2.273 |
|
\[
{}y^{\prime }+y = 2 x +1
\] |
[[_linear, ‘class A‘]] |
✓ |
1.226 |
|
\[
{}y^{\prime } = \cos \left (x -y-1\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
2.909 |
|
\[
{}y^{\prime }+\sin \left (x +y\right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
6.151 |
|
\[
{}y^{\prime } = 2 \sqrt {2 x +y+1}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
1.893 |
|
\[
{}y^{\prime } = \left (x +y+1\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
4.780 |
|
\[
{}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.704 |
|
\[
{}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
2.247 |
|
\[
{}x -y+\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
3.663 |
|
\[
{}y-2 x y+x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
1.860 |
|
\[
{}2 y^{\prime } x = y \left (2 x^{2}-y^{2}\right )
\] |
[_rational, _Bernoulli] |
✓ |
1.443 |
|
\[
{}y^{2}+x^{2} y^{\prime } = x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
37.510 |
|
\[
{}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
5.289 |
|
\[
{}-y+y^{\prime } x = x \tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
4.510 |
|
\[
{}y^{\prime } x = y-x \,{\mathrm e}^{\frac {y}{x}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
9.387 |
|
\[
{}-y+y^{\prime } x = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
3.655 |
|
\[
{}y^{\prime } x = y \cos \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
3.574 |
|
\[
{}y+\sqrt {x y}-y^{\prime } x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
7.825 |
|
\[
{}y^{\prime } x -\sqrt {x^{2}-y^{2}}-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
67.166 |
|
\[
{}x +y-\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
3.699 |
|
\[
{}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
8.083 |
|
\[
{}-y+y^{\prime } x = y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
3.056 |
|
\[
{}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
36.887 |
|
\[
{}x^{2}+x y+y^{2} = x^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
2.615 |
|
\[
{}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
24.481 |
|
\[
{}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
4.267 |
|
\[
{}y^{\prime } = \frac {x}{y}+\frac {y}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
4.949 |
|
\[
{}y^{\prime } x = y+\sqrt {y^{2}-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
4.020 |
|
\[
{}y+\left (2 \sqrt {x y}-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
101.029 |
|
\[
{}y^{\prime } x = y \ln \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
3.319 |
|
\[
{}y^{\prime } \left (y^{\prime }+y\right ) = \left (x +y\right ) x
\] |
[_quadrature] |
✓ |
1.937 |
|
\[
{}\left (y^{\prime } x +y\right )^{2} = y^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
5.809 |
|
\[
{}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
3.619 |
|
\[
{}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
6.664 |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
2.036 |
|
\[
{}y^{\prime }+\frac {x +2 y}{x} = 0
\] |
[_linear] |
✓ |
2.539 |
|
\[
{}y^{\prime } = \frac {y}{x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.837 |
|
\[
{}y^{\prime } x = x +\frac {y}{2}
\] |
[_linear] |
✓ |
6.591 |
|
\[
{}y^{\prime } = \frac {x +y-2}{y-x -4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
3.506 |
|
\[
{}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
4.102 |
|
\[
{}y^{\prime } = \frac {2 y-x +5}{2 x -y-4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
4.242 |
|
\[
{}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
6.554 |
|
\[
{}y^{\prime } = \frac {x +3 y-5}{x -y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.443 |
|
\[
{}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}}
\] |
[[_homogeneous, ‘class C‘], _rational] |
✓ |
1.915 |
|
\[
{}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.916 |
|
\[
{}x -y-1+\left (y-x +2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.094 |
|
\[
{}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
4.159 |
|
\[
{}y+2 = \left (2 x +y-4\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
3.270 |
|
\[
{}\left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3}
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
7.147 |
|
\[
{}y^{\prime } = \frac {x -2 y+5}{y-2 x -4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
4.237 |
|
\[
{}y^{\prime } = \frac {3 x -y+1}{2 x +y+4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
6.921 |
|
\[
{}2 y^{\prime } x +\left (x^{2} y^{4}+1\right ) y = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
2.362 |
|
\[
{}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
0.637 |
|
\[
{}x^{3} \left (y^{\prime }-x \right ) = y^{2}
\] |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
0.364 |
|
\[
{}2 x^{2} y^{\prime } = y^{3}+x y
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
0.701 |
|
\[
{}y+x \left (1+2 x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
0.523 |
|
\[
{}2 y^{\prime }+x = 4 \sqrt {y}
\] |
[[_1st_order, _with_linear_symmetries], _Chini] |
✓ |
1.077 |
|
\[
{}y^{\prime } = y^{2}-\frac {2}{x^{2}}
\] |
[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]] |
✓ |
0.625 |
|
\[
{}2 y^{\prime } x +y = y^{2} \sqrt {x -x^{2} y^{2}}
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
9.733 |
|
\[
{}\frac {2 x y y^{\prime }}{3} = \sqrt {x^{6}-y^{4}}+y^{2}
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
4.274 |
|
\[
{}2 y+\left (x^{2} y+1\right ) x y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
0.477 |
|
\[
{}y \left (1+x y\right )+\left (1-x y\right ) x y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
0.520 |
|
\[
{}y \left (x^{2} y^{2}+1\right )+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
0.683 |
|
\[
{}\left (x^{2}-y^{4}\right ) y^{\prime }-x y = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
1.652 |
|
\[
{}y \left (1+\sqrt {x^{2} y^{4}-1}\right )+2 y^{\prime } x = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
0.885 |
|
\[
{}x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime } = 0
\] |
[_exact, _rational] |
✓ |
1.812 |
|
\[
{}\frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime } = 0
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
1.330 |
|
\[
{}2 x +3+\left (2 y-2\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
3.233 |
|
\[
{}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
6.365 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.279 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.331 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
2.517 |
|
\[
{}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
2.187 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.970 |
|
\[
{}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.253 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.976 |
|
\[
{}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
0.072 |
|
\[
{}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.482 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.885 |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
0.277 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
2.544 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +y = 2 x \,{\mathrm e}^{x}-1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.155 |
|
\[
{}x y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.527 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.316 |
|
\[
{}x^{3} y^{\prime \prime }+y^{\prime } x -y = \cos \left (\frac {1}{x}\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.427 |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.789 |
|
\[
{}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.378 |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
1.829 |
|
\[
{}x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y = x \left (1-\ln \left (x \right )\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.932 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.331 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.847 |
|
\[
{}\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
6.271 |
|