2.2.75 Problems 7401 to 7500

Table 2.151: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7401

\[ {}9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.404

7402

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +p \left (p +1\right ) y = 0 \]

[_Gegenbauer]

1.158

7403

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.307

7404

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.289

7405

\[ {}y^{\prime \prime }-y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.277

7406

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.132

7407

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.109

7408

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.217

7409

\[ {}y^{\prime \prime }+3 y^{\prime }-5 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.390

7410

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{\pi -t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.655

7411

\[ {}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

7412

\[ {}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.515

7413

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.252

7414

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]

[[_2nd_order, _missing_x]]

0.343

7415

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]

[[_2nd_order, _with_linear_symmetries]]

0.358

7416

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.271

7417

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.967

7418

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]

system_of_ODEs

0.299

7419

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.411

7420

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]

system_of_ODEs

0.335

7421

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+t -1 \\ y^{\prime }=3 x+2 y-5 t -2 \end {array}\right ] \]

system_of_ODEs

0.509

7422

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.248

7423

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.211

7424

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.302

7425

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.462

7426

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=-x+y \end {array}\right ] \]

system_of_ODEs

0.289

7427

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=8 x-6 y \end {array}\right ] \]

system_of_ODEs

0.302

7428

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=3 y \end {array}\right ] \]

system_of_ODEs

0.249

7429

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.276

7430

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+6 y \\ y^{\prime }=2 x+6 y \end {array}\right ] \]

system_of_ODEs

0.317

7431

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=4 x+5 y \end {array}\right ] \]

system_of_ODEs

0.397

7432

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-5 t +2 \\ y^{\prime }=4 x-2 y-8 t -8 \end {array}\right ] \]

system_of_ODEs

0.531

7433

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-4 y \\ y^{\prime }=4 x-7 y \end {array}\right ] \]

system_of_ODEs

0.326

7434

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=4 x+y \end {array}\right ] \]

system_of_ODEs

0.310

7435

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+\sqrt {2}\, y \\ y^{\prime }=\sqrt {2}\, x-2 y \end {array}\right ] \]

system_of_ODEs

0.361

7436

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+3 y \\ y^{\prime }=-6 x-4 y \end {array}\right ] \]

system_of_ODEs

0.335

7437

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y \\ y^{\prime }=-2 x-y \end {array}\right ] \]

system_of_ODEs

0.288

7438

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=-x+y \end {array}\right ] \]

system_of_ODEs

0.331

7439

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-5 y \\ y^{\prime }=-x+2 y \end {array}\right ] \]

system_of_ODEs

0.505

7440

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=-4 x+y \end {array}\right ] \]

system_of_ODEs

0.518

7441

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y+z \\ y^{\prime }=-2 x-y+3 z \\ z^{\prime }=x+y+z \end {array}\right ] \]

system_of_ODEs

0.489

7442

\[ {}\left [\begin {array}{c} x^{\prime }=-x+y-z \\ y^{\prime }=2 x-y-4 z \\ z^{\prime }=3 x-y+z \end {array}\right ] \]

system_of_ODEs

7.985

7443

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y-4 t +1 \\ y^{\prime }=-x+2 y+3 t +4 \end {array}\right ] \]

system_of_ODEs

1.173

7444

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y-t +3 \\ y^{\prime }=x+4 y+t -2 \end {array}\right ] \]

system_of_ODEs

0.876

7445

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x+y-t +3 \\ y^{\prime }=-x-5 y+t +1 \end {array}\right ] \]

system_of_ODEs

1.096

7446

\[ {}\left [\begin {array}{c} x^{\prime }=x y+1 \\ y^{\prime }=-x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.048

7447

\[ {}\left [\begin {array}{c} x^{\prime }=t y+1 \\ y^{\prime }=-x t +y \end {array}\right ] \]
i.c.

system_of_ODEs

0.049

7448

\[ {}y^{\prime } = y^{2}-x \]
i.c.

[[_Riccati, _special]]

0.254

7449

\[ {}y^{\prime } = y^{2}-x \]
i.c.

[[_Riccati, _special]]

1.086

7450

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

0.560

7451

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

1.178

7452

\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \]
i.c.

[‘y=_G(x,y’)‘]

0.534

7453

\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \]
i.c.

[‘y=_G(x,y’)‘]

0.501

7454

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.313

7455

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.671

7456

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.507

7457

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.811

7458

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

0.520

7459

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.048

7460

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

0.552

7461

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.267

7462

\[ {}y^{\prime \prime }-y x = 0 \]

[[_Emden, _Fowler]]

0.487

7463

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.503

7464

\[ {}y^{\prime \prime }-2 y^{\prime } x +y = 0 \]

[_Lienard]

0.605

7465

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

0.560

7466

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.598

7467

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.599

7468

\[ {}\left (x -1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.585

7469

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.602

7470

\[ {}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.657

7471

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

0.616

7472

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.688

7473

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.612

7474

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.521

7475

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.641

7476

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.583

7477

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.634

7478

\[ {}y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.817

7479

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.873

7480

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.331

7481

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5.281

7482

\[ {}y^{\prime \prime }-y x = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.513

7483

\[ {}y^{\prime \prime }-4 y^{\prime } x -4 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.699

7484

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.825

7485

\[ {}y^{\prime \prime }+5 y^{\prime } x +\sqrt {x}\, y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.135

7486

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.602

7487

\[ {}y^{\prime \prime }+\cos \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.773

7488

\[ {}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

0.110

7489

\[ {}x \left (x +3\right )^{2} y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.505

7490

\[ {}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.860

7491

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.600

7492

\[ {}\left (x^{3}+4 x \right ) y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.523

7493

\[ {}x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.753

7494

\[ {}\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.792

7495

\[ {}x \left (x^{2}+1\right )^{2} y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.448

7496

\[ {}x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (5+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.142

7497

\[ {}\left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.416

7498

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+5 \left (x +1\right ) y^{\prime }+\left (x^{2}-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.802

7499

\[ {}x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+7 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.405

7500

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.179