2.2.82 Problems 8101 to 8200

Table 2.165: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8101

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.277

8102

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.303

8103

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.562

8104

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.303

8105

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

28.698

8106

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

28.094

8107

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

22.216

8108

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.509

8109

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

1.516

8110

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.455

8111

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.263

8112

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.183

8113

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x = x \]

[[_3rd_order, _with_linear_symmetries]]

0.044

8114

\[ {}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+y x = 0 \]

[[_high_order, _with_linear_symmetries]]

0.285

8115

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.680

8116

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

[[_2nd_order, _missing_y]]

396.624

8117

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.411

8118

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

[NONE]

0.084

8119

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.507

8120

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.325

8121

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.685

8122

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.581

8123

\[ {}y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \]

[[_homogeneous, ‘class D‘]]

3.497

8124

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (1+\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.878

8125

\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

[_rational, _Bernoulli]

1.449

8126

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.757

8127

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.886

8128

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.827

8129

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.779

8130

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.864

8131

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.819

8132

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.914

8133

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.876

8134

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.854

8135

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.906

8136

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.928

8137

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \sin \left (x \right )+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.902

8138

\[ {}x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.068

8139

\[ {}\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.825

8140

\[ {}\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.883

8141

\[ {}\left (x +1\right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.177

8142

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]
i.c.

[_Lienard]

0.713

8143

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y x = x^{2}+2 x \]

[[_2nd_order, _with_linear_symmetries]]

0.996

8144

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.884

8145

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.705

8146

\[ {}y^{\prime \prime }+\left (x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.481

8147

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.911

8148

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.024

8149

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.009

8150

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.052

8151

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.935

8152

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )+\sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.030

8153

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.762

8154

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.957

8155

\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (x +1\right ) y^{\prime }-\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.868

8156

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.862

8157

\[ {}{y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

[‘y=_G(x,y’)‘]

6.923

8158

\[ {}\left (y-2 y^{\prime } x \right )^{2} = {y^{\prime }}^{3} \]

unknown

253.040

8159

\[ {}x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.556

8160

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.700

8161

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.781

8162

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.693

8163

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.721

8164

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.173

8165

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.921

8166

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.909

8167

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.977

8168

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.880

8169

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.894

8170

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x = \cos \left (x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.928

8171

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x = x^{3}+x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.890

8172

\[ {}y^{\prime \prime } \cos \left (x \right )+2 y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.829

8173

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.854

8174

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y x = 0 \]

[[_Emden, _Fowler]]

0.732

8175

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.788

8176

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.276

8177

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.839

8178

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.223

8179

\[ {}x^{2} y^{\prime \prime }-9 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

0.681

8180

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.810

8181

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.836

8182

\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.830

8183

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.780

8184

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

0.664

8185

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y = 0 \]

[[_Emden, _Fowler]]

0.745

8186

\[ {}x^{2} y^{\prime \prime }-y x = 0 \]

[[_Emden, _Fowler]]

1.121

8187

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.705

8188

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

0.991

8189

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.348

8190

\[ {}\frac {x y^{\prime \prime }}{1-x}+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.956

8191

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.438

8192

\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.220

8193

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

0.925

8194

\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.485

8195

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+2 t +1 \\ y^{\prime }=5 x+y+3 t -1 \end {array}\right ] \]

system_of_ODEs

0.785

8196

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

55.072

8197

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.515

8198

\[ {}y^{\prime \prime } = A y^{{2}/{3}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

167.361

8199

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.736

8200

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.156