# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.675 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.657 |
|
\[
{}y^{\prime \prime }+y^{\prime }-x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.623 |
|
\[
{}y^{\prime \prime }+y^{\prime }-x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.661 |
|
\[
{}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.792 |
|
\[
{}y^{\prime \prime }+x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.548 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.003 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x +2 p y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.775 |
|
\[
{}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.136 |
|
\[
{}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.635 |
|
\[
{}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✗ |
0.222 |
|
\[
{}\left (1+3 x \right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.669 |
|
\[
{}y^{\prime \prime }+\sin \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.949 |
|
\[
{}x y^{\prime \prime }+\sin \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.198 |
|
\[
{}x^{2} y^{\prime \prime }+\sin \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.512 |
|
\[
{}x^{3} y^{\prime \prime }+\sin \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.912 |
|
\[
{}x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.181 |
|
\[
{}x^{3} y^{\prime \prime }+\left (\cos \left (2 x \right )-1\right ) y^{\prime }+2 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.124 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.197 |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.394 |
|
\[
{}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.861 |
|
\[
{}4 x y^{\prime \prime }+3 y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.126 |
|
\[
{}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.055 |
|
\[
{}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.141 |
|
\[
{}2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.148 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y = 0
\] |
[_Lienard] |
✓ |
0.766 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✗ |
0.126 |
|
\[
{}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✗ |
0.178 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.957 |
|
\[
{}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.149 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
0.914 |
|
\[
{}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.148 |
|
\[
{}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.873 |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.912 |
|
\[
{}3 \left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.852 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0
\] |
[_Bessel] |
✓ |
1.289 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.021 |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0
\] |
[_Jacobi] |
✓ |
1.169 |
|
\[
{}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.955 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.278 |
|
\[
{}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.228 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.776 |
|
\[
{}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+y \,{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.425 |
|
\[
{}y^{\prime \prime }+2 x y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.643 |
|
\[
{}y^{\prime \prime }-y^{\prime } x +y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.683 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{3}-x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.537 |
|
\[
{}2 y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.637 |
|
\[
{}\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.801 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.649 |
|
\[
{}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.709 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.743 |
|
\[
{}\left (x^{2}+1\right ) x^{2} y^{\prime \prime }-y^{\prime } x +\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.009 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.917 |
|
\[
{}x y^{\prime \prime }-4 y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
0.929 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.944 |
|
\[
{}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.091 |
|
\[
{}x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+2 y = 0
\] |
[_Laguerre] |
✓ |
0.912 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.916 |
|
\[
{}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.843 |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
0.046 |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
0.046 |
|
\[
{}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
0.046 |
|
\[
{}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
0.051 |
|
\[
{}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.957 |
|
\[
{}9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.421 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +p \left (p +1\right ) y = 0
\] |
[_Gegenbauer] |
✓ |
1.242 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.318 |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.288 |
|
\[
{}y^{\prime \prime }-y = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.272 |
|
\[
{}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.204 |
|
\[
{}L i^{\prime }+R i = E_{0} \delta \left (t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.121 |
|
\[
{}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.297 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-5 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.351 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{\pi -t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.727 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.346 |
|
\[
{}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.516 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.206 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+3 y = 2
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.308 |
|
\[
{}y^{\prime \prime }+y^{\prime }+2 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.311 |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.225 |
|
\[
{}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
10.431 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.433 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.554 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=3 x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.436 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y+t -1 \\ y^{\prime }=3 x+2 y-5 t -2 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.569 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.386 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.326 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-2 x+3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.426 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=5 x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.605 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=y-x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.408 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=8 x-6 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.410 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.360 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-4 x-y \\ y^{\prime }=x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.382 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=7 x+6 y \\ y^{\prime }=2 x+6 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.439 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=4 x+5 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.545 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y-5 t +2 \\ y^{\prime }=4 x-2 y-8 t -8 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.581 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-4 y \\ y^{\prime }=4 x-7 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.455 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=4 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.447 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x+\sqrt {2}\, y \\ y^{\prime }=\sqrt {2}\, x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.491 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=5 x+3 y \\ y^{\prime }=-6 x-4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.442 |
|