2.2.82 Problems 8101 to 8200

Table 2.165: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8101

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.675

8102

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.657

8103

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.623

8104

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.661

8105

\[ {}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.792

8106

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.548

8107

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.003

8108

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 p y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.775

8109

\[ {}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.136

8110

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.635

8111

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.222

8112

\[ {}\left (1+3 x \right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.669

8113

\[ {}y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.949

8114

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.198

8115

\[ {}x^{2} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.512

8116

\[ {}x^{3} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.912

8117

\[ {}x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.181

8118

\[ {}x^{3} y^{\prime \prime }+\left (\cos \left (2 x \right )-1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.124

8119

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.197

8120

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x y = 0 \]

[[_Emden, _Fowler]]

1.394

8121

\[ {}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0 \]

[[_Emden, _Fowler]]

0.861

8122

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.126

8123

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.055

8124

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.141

8125

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.148

8126

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]

[_Lienard]

0.766

8127

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.126

8128

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.178

8129

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.957

8130

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.149

8131

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.914

8132

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.148

8133

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.873

8134

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.912

8135

\[ {}3 \left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.852

8136

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.289

8137

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.021

8138

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

1.169

8139

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.955

8140

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.278

8141

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.228

8142

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.776

8143

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.425

8144

\[ {}y^{\prime \prime }+2 x y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.643

8145

\[ {}y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.683

8146

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}-x \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.537

8147

\[ {}2 y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.637

8148

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.801

8149

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.649

8150

\[ {}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.709

8151

\[ {}\left (x -1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.743

8152

\[ {}\left (x^{2}+1\right ) x^{2} y^{\prime \prime }-y^{\prime } x +\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.009

8153

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.917

8154

\[ {}x y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

[_Lienard]

0.929

8155

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.944

8156

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.091

8157

\[ {}x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.912

8158

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.916

8159

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.843

8160

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.046

8161

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.046

8162

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.046

8163

\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.051

8164

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.957

8165

\[ {}9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.421

8166

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +p \left (p +1\right ) y = 0 \]

[_Gegenbauer]

1.242

8167

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.318

8168

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.288

8169

\[ {}y^{\prime \prime }-y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.272

8170

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.204

8171

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.121

8172

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.297

8173

\[ {}y^{\prime \prime }+3 y^{\prime }-5 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.351

8174

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{\pi -t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.727

8175

\[ {}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

8176

\[ {}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.516

8177

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.206

8178

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]

[[_2nd_order, _missing_x]]

0.308

8179

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]

[[_2nd_order, _with_linear_symmetries]]

0.311

8180

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.225

8181

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

10.431

8182

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]

system_of_ODEs

0.433

8183

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.554

8184

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]

system_of_ODEs

0.436

8185

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+t -1 \\ y^{\prime }=3 x+2 y-5 t -2 \end {array}\right ] \]

system_of_ODEs

0.569

8186

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.386

8187

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.326

8188

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.426

8189

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.605

8190

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.408

8191

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=8 x-6 y \end {array}\right ] \]

system_of_ODEs

0.410

8192

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=3 y \end {array}\right ] \]

system_of_ODEs

0.360

8193

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.382

8194

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+6 y \\ y^{\prime }=2 x+6 y \end {array}\right ] \]

system_of_ODEs

0.439

8195

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=4 x+5 y \end {array}\right ] \]

system_of_ODEs

0.545

8196

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-5 t +2 \\ y^{\prime }=4 x-2 y-8 t -8 \end {array}\right ] \]

system_of_ODEs

0.581

8197

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-4 y \\ y^{\prime }=4 x-7 y \end {array}\right ] \]

system_of_ODEs

0.455

8198

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=4 x+y \end {array}\right ] \]

system_of_ODEs

0.447

8199

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+\sqrt {2}\, y \\ y^{\prime }=\sqrt {2}\, x-2 y \end {array}\right ] \]

system_of_ODEs

0.491

8200

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+3 y \\ y^{\prime }=-6 x-4 y \end {array}\right ] \]

system_of_ODEs

0.442