2.2.83 Problems 8201 to 8300

Table 2.167: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8201

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.479

8202

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.165

8203

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.981

8204

\[ {}y^{\prime }+y = \frac {1}{x} \]

[[_linear, ‘class A‘]]

0.216

8205

\[ {}y^{\prime }+y = \frac {1}{x^{2}} \]

[[_linear, ‘class A‘]]

0.237

8206

\[ {}y^{\prime } x +y = 0 \]

[_separable]

0.427

8207

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

0.134

8208

\[ {}y^{\prime \prime } = \frac {1}{x} \]

[[_2nd_order, _quadrature]]

0.056

8209

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]

[[_2nd_order, _missing_y]]

0.065

8210

\[ {}y^{\prime \prime }+y = \frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.060

8211

\[ {}y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.062

8212

\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

[_quadrature]

2.345

8213

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.750

8214

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.389

8215

\[ {}y^{\prime \prime }+y = {\mathrm e}^{a \cos \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.949

8216

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

1.395

8217

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.894

8218

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

1.130

8219

\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

14.723

8220

\[ {}y^{\prime } = \frac {y x +3 x -2 y+6}{y x -3 x -2 y+6} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.812

8221

\[ {}y^{\prime } = 0 \]

[_quadrature]

0.338

8222

\[ {}y^{\prime } = a \]

[_quadrature]

0.313

8223

\[ {}y^{\prime } = x \]

[_quadrature]

0.214

8224

\[ {}y^{\prime } = 1 \]

[_quadrature]

0.411

8225

\[ {}y^{\prime } = a x \]

[_quadrature]

0.147

8226

\[ {}y^{\prime } = a x y \]

[_separable]

0.799

8227

\[ {}y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

0.657

8228

\[ {}y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

0.781

8229

\[ {}y^{\prime } = y \]

[_quadrature]

0.439

8230

\[ {}y^{\prime } = b y \]

[_quadrature]

0.392

8231

\[ {}y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

1.031

8232

\[ {}c y^{\prime } = 0 \]

[_quadrature]

0.339

8233

\[ {}c y^{\prime } = a \]

[_quadrature]

0.319

8234

\[ {}c y^{\prime } = a x \]

[_quadrature]

0.184

8235

\[ {}c y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

0.720

8236

\[ {}c y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

0.791

8237

\[ {}c y^{\prime } = y \]

[_quadrature]

0.540

8238

\[ {}c y^{\prime } = b y \]

[_quadrature]

0.579

8239

\[ {}c y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

1.173

8240

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r} \]

[[_Riccati, _special]]

1.237

8241

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r x} \]

[_rational, _Riccati]

3.790

8242

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}} \]

[_rational, _Riccati]

5.656

8243

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{y} \]

[_rational, _Bernoulli]

1.492

8244

\[ {}a \sin \left (x \right ) y x y^{\prime } = 0 \]

[_quadrature]

0.376

8245

\[ {}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0 \]

[_quadrature]

0.332

8246

\[ {}y^{\prime } = \sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

1.162

8247

\[ {}y^{\prime } = \sin \left (x \right )+y^{2} \]

[_Riccati]

2.267

8248

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \]

[_linear]

1.122

8249

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \]

[_Riccati]

3.011

8250

\[ {}y^{\prime } = x +y+b y^{2} \]

[_Riccati]

1.110

8251

\[ {}y^{\prime } x = 0 \]

[_quadrature]

0.338

8252

\[ {}5 y^{\prime } = 0 \]

[_quadrature]

0.336

8253

\[ {}{\mathrm e} y^{\prime } = 0 \]

[_quadrature]

0.358

8254

\[ {}\pi y^{\prime } = 0 \]

[_quadrature]

0.355

8255

\[ {}\sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

0.387

8256

\[ {}f \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

0.375

8257

\[ {}y^{\prime } x = 1 \]

[_quadrature]

0.260

8258

\[ {}y^{\prime } x = \sin \left (x \right ) \]

[_quadrature]

0.332

8259

\[ {}\left (x -1\right ) y^{\prime } = 0 \]

[_quadrature]

0.342

8260

\[ {}y y^{\prime } = 0 \]

[_quadrature]

0.335

8261

\[ {}x y y^{\prime } = 0 \]

[_quadrature]

0.337

8262

\[ {}x y \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

0.336

8263

\[ {}\pi y \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

0.341

8264

\[ {}x \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

0.394

8265

\[ {}x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \]

[_quadrature]

0.137

8266

\[ {}y {y^{\prime }}^{2} = 0 \]

[_quadrature]

0.127

8267

\[ {}{y^{\prime }}^{n} = 0 \]

[_quadrature]

0.386

8268

\[ {}x {y^{\prime }}^{n} = 0 \]

[_quadrature]

0.347

8269

\[ {}{y^{\prime }}^{2} = x \]

[_quadrature]

0.175

8270

\[ {}{y^{\prime }}^{2} = x +y \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.392

8271

\[ {}{y^{\prime }}^{2} = \frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.360

8272

\[ {}{y^{\prime }}^{2} = \frac {y^{2}}{x} \]

[_separable]

1.135

8273

\[ {}{y^{\prime }}^{2} = \frac {y^{3}}{x} \]

[[_homogeneous, ‘class G‘]]

0.747

8274

\[ {}{y^{\prime }}^{3} = \frac {y^{2}}{x} \]

[[_homogeneous, ‘class G‘], _rational]

2.029

8275

\[ {}{y^{\prime }}^{2} = \frac {1}{y x} \]

[[_homogeneous, ‘class G‘]]

0.587

8276

\[ {}{y^{\prime }}^{2} = \frac {1}{x y^{3}} \]

[[_homogeneous, ‘class G‘]]

0.647

8277

\[ {}{y^{\prime }}^{2} = \frac {1}{x^{2} y^{3}} \]

[_separable]

0.661

8278

\[ {}{y^{\prime }}^{4} = \frac {1}{x y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

1.007

8279

\[ {}{y^{\prime }}^{2} = \frac {1}{x^{3} y^{4}} \]

[_separable]

0.806

8280

\[ {}y^{\prime } = \sqrt {1+6 x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.340

8281

\[ {}y^{\prime } = \left (1+6 x +y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.687

8282

\[ {}y^{\prime } = \left (1+6 x +y\right )^{{1}/{4}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.573

8283

\[ {}y^{\prime } = \left (a +b x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

156.417

8284

\[ {}y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

17.291

8285

\[ {}y^{\prime } = \left (a +b x +c y\right )^{6} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5.695

8286

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1.757

8287

\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.792

8288

\[ {}y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.582

8289

\[ {}y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.060

8290

\[ {}y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.198

8291

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x=y+t \\ x^{\prime }+y^{\prime }=2 x+3 y+{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.169

8292

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-x=y+t \\ x^{\prime }+y^{\prime }=2 x+3 y+{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.911

8293

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x=y+t +\sin \left (t \right )+\cos \left (t \right ) \\ x^{\prime }+y^{\prime }=2 x+3 y+{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.265

8294

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

1.150

8295

\[ {}{y^{\prime \prime }}^{2} = 0 \]

[[_2nd_order, _quadrature]]

0.215

8296

\[ {}{y^{\prime \prime }}^{n} = 0 \]

[[_2nd_order, _quadrature]]

0.128

8297

\[ {}a y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

1.164

8298

\[ {}a {y^{\prime \prime }}^{2} = 0 \]

[[_2nd_order, _quadrature]]

0.205

8299

\[ {}a {y^{\prime \prime }}^{n} = 0 \]

[[_2nd_order, _quadrature]]

0.142

8300

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

1.481