2.2.83 Problems 8201 to 8300

Table 2.167: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8201

\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.367

8202

\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

8.104

8203

\[ {}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.646

8204

\[ {}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.549

8205

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.978

8206

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.049

8207

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.111

8208

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

[[_2nd_order, _with_linear_symmetries]]

1.069

8209

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0 \]

[[_homogeneous, ‘class G‘]]

4.847

8210

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

2.054

8211

\[ {}9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

80.571

8212

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.520

8213

\[ {}x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.263

8214

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.480

8215

\[ {}y^{2} {y^{\prime }}^{2}-y \left (x +1\right ) y^{\prime }+x = 0 \]

[_quadrature]

4.117

8216

\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

[[_homogeneous, ‘class G‘]]

5.934

8217

\[ {}4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries]]

105.388

8218

\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.277

8219

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.296

8220

\[ {}16 x {y^{\prime }}^{2}+8 y^{\prime } y+y^{6} = 0 \]

[[_homogeneous, ‘class G‘]]

3.481

8221

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

0.522

8222

\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.204

8223

\[ {}9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

23.071

8224

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+y^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.650

8225

\[ {}x^{6} {y^{\prime }}^{2} = 16 y+8 x y^{\prime } \]

[[_homogeneous, ‘class G‘]]

2.173

8226

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

2.949

8227

\[ {}\left (y^{\prime }+1\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.001

8228

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.688

8229

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

2.470

8230

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.900

8231

\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.589

8232

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

131.250

8233

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.344

8234

\[ {}y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

0.566

8235

\[ {}y^{\prime \prime }+3 x y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.621

8236

\[ {}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.619

8237

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.649

8238

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.507

8239

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+10 x y^{\prime }+20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.680

8240

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.660

8241

\[ {}\left (x^{2}-9\right ) y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.631

8242

\[ {}y^{\prime \prime }+2 x y^{\prime }+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.618

8243

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.686

8244

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.661

8245

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.510

8246

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+6 x y^{\prime }-4 y = 0 \]

[_Gegenbauer]

0.691

8247

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.630

8248

\[ {}y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.079

8249

\[ {}y^{\prime \prime }+x y^{\prime }+3 y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.651

8250

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.622

8251

\[ {}y^{\prime \prime }+3 x y^{\prime }+7 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.630

8252

\[ {}2 y^{\prime \prime }+9 x y^{\prime }-36 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.617

8253

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.650

8254

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+3 x y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.648

8255

\[ {}\left (9 x^{2}+1\right ) y^{\prime \prime }-18 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.635

8256

\[ {}\left (3 x^{2}+1\right ) y^{\prime \prime }+13 x y^{\prime }+7 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.689

8257

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+11 x y^{\prime }+9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.697

8258

\[ {}y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.659

8259

\[ {}y^{\prime \prime }+\left (-2+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.543

8260

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }-4 \left (x -1\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.534

8261

\[ {}2 x \left (x +1\right ) y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.016

8262

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.987

8263

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.931

8264

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

1.063

8265

\[ {}2 \left (1-x \right ) x^{2} y^{\prime \prime }-x \left (1+7 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.135

8266

\[ {}2 x y^{\prime \prime }+5 \left (-2 x +1\right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.083

8267

\[ {}8 x^{2} y^{\prime \prime }+10 x y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.122

8268

\[ {}2 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.875

8269

\[ {}2 x \left (x +3\right ) y^{\prime \prime }-3 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.053

8270

\[ {}2 x y^{\prime \prime }+\left (-2 x^{2}+1\right ) y^{\prime }-4 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.906

8271

\[ {}x \left (4-x \right ) y^{\prime \prime }+\left (2-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.132

8272

\[ {}3 x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.109

8273

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.049

8274

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.113

8275

\[ {}2 x^{2} y^{\prime \prime }-3 x \left (1-x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.127

8276

\[ {}2 x^{2} y^{\prime \prime }+x \left (4 x -1\right ) y^{\prime }+2 \left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.086

8277

\[ {}2 x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.843

8278

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.789

8279

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.798

8280

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

[[_Emden, _Fowler]]

0.784

8281

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.807

8282

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

1.150

8283

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.175

8284

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

[[_Emden, _Fowler]]

0.719

8285

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.064

8286

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

[[_Emden, _Fowler]]

0.976

8287

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.960

8288

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.142

8289

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1.151

8290

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1.971

8291

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.127

8292

\[ {}x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.949

8293

\[ {}4 x^{2} y^{\prime \prime }+\left (-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.965

8294

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.919

8295

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.880

8296

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.861

8297

\[ {}x^{2} y^{\prime \prime }-x \left (3 x +1\right ) y^{\prime }+\left (1-6 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.968

8298

\[ {}x^{2} y^{\prime \prime }+x \left (x -1\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.934

8299

\[ {}x \left (-2+x \right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.880

8300

\[ {}x \left (-2+x \right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.900