2.2.85 Problems 8401 to 8500

Table 2.171: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8401

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.318

8402

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.322

8403

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.244

8404

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.329

8405

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.255

8406

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.345

8407

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.122

8408

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.259

8409

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.272

8410

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.189

8411

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.299

8412

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.301

8413

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.303

8414

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.361

8415

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.305

8416

\[ {}2 y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.323

8417

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.262

8418

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.263

8419

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.256

8420

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.009

8421

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.133

8422

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.266

8423

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.165

8424

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.340

8425

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.136

8426

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.106

8427

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.258

8428

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.175

8429

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.170

8430

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.135

8431

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.213

8432

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.111

8433

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.132

8434

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.121

8435

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.171

8436

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.265

8437

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.143

8438

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.292

8439

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.340

8440

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (4+x \right ) y^{\prime }+\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.268

8441

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.277

8442

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.400

8443

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.540

8444

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.305

8445

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.306

8446

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.342

8447

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y = 0 \]

[_Gegenbauer]

0.294

8448

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.461

8449

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x -4 y = 0 \]

[_Gegenbauer]

0.299

8450

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x +28 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.391

8451

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.277

8452

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-9 y^{\prime } x -6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.530

8453

\[ {}\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.649

8454

\[ {}y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.334

8455

\[ {}\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.306

8456

\[ {}\left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (x +1\right ) y^{\prime }+60 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.620

8457

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.457

8458

\[ {}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.141

8459

\[ {}y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.457

8460

\[ {}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

434.111

8461

\[ {}y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.484

8462

\[ {}\left (3 x +1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

32.006

8463

\[ {}\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.855

8464

\[ {}\left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.415

8465

\[ {}\left (4+x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.347

8466

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.354

8467

\[ {}x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.337

8468

\[ {}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.089

8469

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.226

8470

\[ {}y^{\prime \prime }+3 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.322

8471

\[ {}\left (2+4 x \right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.343

8472

\[ {}y^{\prime \prime }-3 y^{\prime } x +\left (2 x^{2}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.347

8473

\[ {}2 y^{\prime \prime }+5 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.260

8474

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.119

8475

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.127

8476

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.218

8477

\[ {}3 x^{2} y^{\prime \prime }+2 x \left (-2 x^{2}+x +1\right ) y^{\prime }+\left (-8 x^{2}+2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.450

8478

\[ {}12 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.433

8479

\[ {}x^{2} \left (10 x^{2}+x +5\right ) y^{\prime \prime }+x \left (48 x^{2}+3 x +4\right ) y^{\prime }+\left (36 x^{2}+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.209

8480

\[ {}18 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.418

8481

\[ {}2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.329

8482

\[ {}2 x^{2} y^{\prime \prime }+x \left (5+x \right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.359

8483

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.533

8484

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.233

8485

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.672

8486

\[ {}2 x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.372

8487

\[ {}x^{2} \left (4+x \right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.609

8488

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.302

8489

\[ {}6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.415

8490

\[ {}x^{2} \left (4 x +3\right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (4 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.407

8491

\[ {}2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.252

8492

\[ {}x^{2} \left (x +2\right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.984

8493

\[ {}8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.436

8494

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.428

8495

\[ {}x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.375

8496

\[ {}4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.427

8497

\[ {}3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.465

8498

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.482

8499

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.410

8500

\[ {}2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.651