| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\left (x y^{2}+x^{3}\right ) y^{\prime }&=2 y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
13.734 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }+2 y x&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.814 |
|
| \begin{align*}
y^{\prime }+y \tanh \left (x \right )&=2 \sinh \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.475 |
|
| \begin{align*}
y^{\prime } x -2 y&=\cos \left (x \right ) x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.728 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.329 |
|
| \begin{align*}
y^{\prime } x +3 y&=y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.858 |
|
| \begin{align*}
x \left (-3+y\right ) y^{\prime }&=4 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
11.256 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=x^{2} y \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.969 |
|
| \begin{align*}
x^{3}+\left (1+y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.898 |
|
| \begin{align*}
\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= \frac {\pi }{4} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.191 |
|
| \begin{align*}
x^{2} \left (1+y\right )+y^{2} \left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.082 |
|
| \begin{align*}
\left (-x +2 y\right ) y^{\prime }&=2 x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
9.936 |
|
| \begin{align*}
y x +y^{2}+\left (x^{2}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
38.036 |
|
| \begin{align*}
x^{3}+y^{3}&=3 y^{\prime } y^{2} x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.619 |
|
| \begin{align*}
y-3 x +\left (3 x +4 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
15.590 |
|
| \begin{align*}
\left (x^{3}+3 x y^{2}\right ) y^{\prime }&=y^{3}+3 x^{2} y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
20.796 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{3}+3 x^{2}-2 x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| \begin{align*}
y^{\prime }+\tan \left (x \right ) y&=\sin \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.199 |
|
| \begin{align*}
-y+y^{\prime } x&=\cos \left (x \right ) x^{3} \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+3 y x&=5 x \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.308 |
|
| \begin{align*}
y^{\prime }+\cot \left (x \right ) y&=5 \,{\mathrm e}^{\cos \left (x \right )} \\
y \left (\frac {\pi }{2}\right ) &= -4 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.511 |
|
| \begin{align*}
\left (3 x +3 y-4\right ) y^{\prime }&=-x -y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
10.296 |
|
| \begin{align*}
x -x y^{2}&=\left (x +x^{2} y\right ) y^{\prime } \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
15.078 |
|
| \begin{align*}
x -y-1+\left (4 y+x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
19.711 |
|
| \begin{align*}
3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
128.743 |
|
| \begin{align*}
\left (y x +1\right ) y+x \left (1+y x +y^{2} x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
5.539 |
|
| \begin{align*}
y^{\prime }+y&=x y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.361 |
|
| \begin{align*}
y^{\prime }+y&=y^{4} {\mathrm e}^{x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
2 y^{\prime }+y&=y^{3} \left (x -1\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
y^{\prime }-2 \tan \left (x \right ) y&=y^{2} \tan \left (x \right )^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime }+\tan \left (x \right ) y&=y^{3} \sec \left (x \right )^{4} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.474 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=y x +1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.091 |
|
| \begin{align*}
y y^{\prime } x -\left (x +1\right ) \sqrt {-1+y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.874 |
|
| \begin{align*}
y^{\prime }-\cot \left (x \right ) y&=y^{2} \sec \left (x \right )^{2} \\
y \left (\frac {\pi }{4}\right ) &= -1 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.312 |
|
| \begin{align*}
y+\left (x^{2}-4 x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.364 |
|
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=\cos \left (x \right )-2 x \sin \left (x \right ) \\
y \left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.450 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x}{x^{2}+2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
13.291 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=x \left (1+y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.035 |
|
| \begin{align*}
y^{\prime } x +2 y&=3 x -1 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.444 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}-y y^{\prime } x \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
18.521 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.851 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=\sin \left (2 x \right ) \\
y \left (\frac {\pi }{4}\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.654 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=y y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
20.148 |
|
| \begin{align*}
2 y y^{\prime } x&=x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.883 |
|
| \begin{align*}
y^{\prime }&=\frac {x -2 y+1}{2 x -4 y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.307 |
|
| \begin{align*}
\left (-x^{3}+1\right ) y^{\prime }+x^{2} y&=x^{2} \left (-x^{3}+1\right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.725 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=\sin \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.412 |
|
| \begin{align*}
y^{\prime }+x +x y^{2}&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
4.816 |
|
| \begin{align*}
y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y&=\frac {1}{-x^{2}+1} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.260 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y x&=\left (x^{2}+1\right )^{{3}/{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.188 |
|
| \begin{align*}
x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.859 |
|
| \begin{align*}
\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}}&=1 \\
r \left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.684 |
|
| \begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.134 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.885 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
20.036 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=10 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
64.640 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
18.703 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=5 x^{2}+x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
64.716 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
10.531 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
59.582 |
|
| \begin{align*}
3 y^{\prime \prime }-2 y^{\prime }-y&=2 x -3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
72.649 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&=8 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
46.846 |
|
| \begin{align*}
2 y^{\prime \prime }-7 y^{\prime }-4 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
42.957 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=54 x +18 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
13.126 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=100 \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
70.082 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=4 \sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
29.094 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=2 \cosh \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
90.974 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+10 y&=20-{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
79.986 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=2 \cos \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
9.924 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x +{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
91.804 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&=x^{2}-1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
79.618 |
|
| \begin{align*}
y^{\prime \prime }-9 y&={\mathrm e}^{3 x}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
67.370 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+3 x&={\mathrm e}^{-3 t} \\
x \left (0\right ) &= {\frac {1}{2}} \\
x^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.211 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=6 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
39.334 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=\sin \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.764 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=3 \sin \left (x \right ) \\
y \left (0\right ) &= -{\frac {9}{10}} \\
y^{\prime }\left (0\right ) &= -{\frac {7}{10}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.676 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+10 y&=50 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
21.165 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=85 \sin \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= -20 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
157.699 |
|
| \begin{align*}
y^{\prime \prime }&=3 \sin \left (x \right )-4 y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
11.807 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{2}&=-48 x \\
x \left (0\right ) &= {\frac {1}{6}} \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.636 |
|
| \begin{align*}
x^{\prime \prime }+5 x^{\prime }+6 x&=\cos \left (t \right ) \\
x \left (0\right ) &= {\frac {1}{10}} \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.727 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
81.168 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
46.134 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
83.796 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
68.968 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=64 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
67.300 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=50 t^{3}-36 t^{2}-63 t +18 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
69.135 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=2 x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| \begin{align*}
y^{\prime \prime }&=9 x^{2}+2 x -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.935 |
|
| \begin{align*}
y^{\prime \prime }-5 y&=2 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
67.189 |
|
| \begin{align*}
y^{\prime }-5 y&=\sin \left (x \right ) \left (x -1\right )+\left (x +1\right ) \cos \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.178 |
|
| \begin{align*}
y^{\prime }-5 y&=3 \,{\mathrm e}^{x}-2 x +1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.448 |
|
| \begin{align*}
y^{\prime }-5 y&={\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.799 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2}-1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
78.721 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
15.618 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
8.723 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
17.252 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
19.694 |
|
| \begin{align*}
y^{\prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.742 |
|
| \begin{align*}
y^{\prime }-y&=x \,{\mathrm e}^{2 x}+1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.311 |
|