2.59 Problems 5801 to 5900

Table 2.59: Main lookup table

#

ODE

Mathematica result

Maple result

5801

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

5802

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

5803

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

5804

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

5805

\[ {}y^{\prime \prime }-x y = 0 \]

5806

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

5807

\[ {}y^{\prime \prime }-2 x y^{\prime }+y = 0 \]

5808

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

5809

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

5810

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

5811

\[ {}\left (-1+x \right ) y^{\prime \prime }+y^{\prime } = 0 \]

5812

\[ {}\left (2+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

5813

\[ {}y^{\prime \prime }-\left (1+x \right ) y^{\prime }-y = 0 \]

5814

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

5815

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

5816

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

5817

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

5818

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0 \]

5819

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]

5820

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

5821

\[ {}y^{\prime \prime }+\sin \relax (x ) y = 0 \]

5822

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y = 0 \]

5823

\[ {}\cos \relax (x ) y^{\prime \prime }+y^{\prime }+5 y = 0 \]

5824

\[ {}\cos \relax (x ) y^{\prime \prime }+y^{\prime }+5 y = 0 \]

5825

\[ {}y^{\prime \prime }-x y = 1 \]

5826

\[ {}y^{\prime \prime }-4 x y^{\prime }-4 y = {\mathrm e}^{x} \]

5827

\[ {}x y^{\prime \prime }+\sin \relax (x ) y = 0 \]

5828

\[ {}y^{\prime \prime }+5 x y^{\prime }+y \sqrt {x} = 0 \]

5829

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

5830

\[ {}y^{\prime \prime }+\cos \relax (x ) y = 0 \]

5831

\[ {}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

5832

\[ {}x \left (x +3\right )^{2} y^{\prime \prime }-y = 0 \]

5833

\[ {}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

5834

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (-1+x \right )^{3}} = 0 \]

5835

\[ {}\left (x^{3}+4 x \right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

5836

\[ {}x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}-25\right ) y = 0 \]

5837

\[ {}\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (-2+x \right ) y = 0 \]

5838

\[ {}x \left (x^{2}+1\right )^{2} y^{\prime \prime }+y = 0 \]

5839

\[ {}x^{3} \left (x^{2}-25\right ) \left (-2+x \right )^{2} y^{\prime \prime }+3 x \left (-2+x \right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

5840

\[ {}\left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-\left (1+x \right ) y = 0 \]

5841

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+5 \left (1+x \right ) y^{\prime }+\left (x^{2}-x \right ) y = 0 \]

5842

\[ {}x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+7 x^{2} y = 0 \]

5843

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

5844

\[ {}x y^{\prime \prime }+y^{\prime }+10 y = 0 \]

5845

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

5846

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

5847

\[ {}4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0 \]

5848

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

5849

\[ {}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

5850

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]

5851

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

5852

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {4}{9}\right ) y = 0 \]

5853

\[ {}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]

5854

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y = 0 \]

5855

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

5856

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

5857

\[ {}x y^{\prime \prime }-x y^{\prime }+y = 0 \]

5858

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]

5859

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

5860

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

5861

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

5862

\[ {}x \left (-1+x \right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

5863

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{t}+\lambda y = 0 \]

5864

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

5865

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

5866

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

5867

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

5868

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

5869

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

5870

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

5871

\[ {}y^{\prime }+x y^{\prime \prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

5872

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

5873

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

5874

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

5875

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

5876

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

5877

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

5878

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

5879

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

5880

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

5881

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

5882

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

5883

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

5884

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

5885

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

5886

\[ {}y^{\prime \prime }+y = 0 \]

5887

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

5888

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

5889

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \]

5890

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

5891

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

5892

\[ {}\left (-1+x \right ) y^{\prime \prime }+3 y = 0 \]

5893

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

5894

\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }+2 y = 0 \]

5895

\[ {}\cos \relax (x ) y^{\prime \prime }+y = 0 \]

5896

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

5897

\[ {}\left (2+x \right ) y^{\prime \prime }+3 y = 0 \]

5898

\[ {}\left (1-2 \sin \relax (x )\right ) y^{\prime \prime }+x y = 0 \]

5899

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

5900

\[ {}x y^{\prime \prime }+\left (1-\cos \relax (x )\right ) y^{\prime }+x^{2} y = 0 \]