6.144 Problems 14301 to 14400

Table 6.287: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

14301

\[ {} y^{\prime } = \frac {\sqrt {y}}{x} \]

14302

\[ {} y^{\prime } = \frac {x y}{1-y} \]

14303

\[ {} y^{\prime } = \left (x y\right )^{{1}/{3}} \]

14304

\[ {} y^{\prime } = \sqrt {\frac {y-4}{x}} \]

14305

\[ {} y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

14306

\[ {} y^{\prime } = 4 y-5 \]

14307

\[ {} y^{\prime }+3 y = 1 \]

14308

\[ {} y^{\prime } = a y+b \]

14309

\[ {} y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]

14310

\[ {} y^{\prime } = x y+\frac {1}{x^{2}+1} \]

14311

\[ {} y^{\prime } = \frac {y}{x}+\cos \left (x \right ) \]

14312

\[ {} y^{\prime } = \frac {y}{x}+\tan \left (x \right ) \]

14313

\[ {} y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]

14314

\[ {} y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]

14315

\[ {} y^{\prime } = \cot \left (x \right ) y+\csc \left (x \right ) \]

14316

\[ {} y^{\prime } = -x \sqrt {1-y^{2}} \]

14317

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

14318

\[ {} y^{\prime } = 3 x +1 \]

14319

\[ {} y^{\prime } = x +\frac {1}{x} \]

14320

\[ {} y^{\prime } = 2 \sin \left (x \right ) \]

14321

\[ {} y^{\prime } = x \sin \left (x \right ) \]

14322

\[ {} y^{\prime } = \frac {1}{x -1} \]

14323

\[ {} y^{\prime } = \frac {1}{x -1} \]

14324

\[ {} y^{\prime } = \frac {1}{x^{2}-1} \]

14325

\[ {} y^{\prime } = \frac {1}{x^{2}-1} \]

14326

\[ {} y^{\prime } = \tan \left (x \right ) \]

14327

\[ {} y^{\prime } = \tan \left (x \right ) \]

14328

\[ {} y^{\prime } = 3 y \]

14329

\[ {} y^{\prime } = 1-y \]

14330

\[ {} y^{\prime } = 1-y \]

14331

\[ {} y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]

14332

\[ {} y^{\prime } = \frac {y}{x} \]

14333

\[ {} y^{\prime } = \frac {2 x}{y} \]

14334

\[ {} y^{\prime } = -2 y+y^{2} \]

14335

\[ {} y^{\prime } = x y+x \]

14336

\[ {} x \,{\mathrm e}^{y}+y^{\prime } = 0 \]

14337

\[ {} y-x^{2} y^{\prime } = 0 \]

14338

\[ {} 2 y y^{\prime } = 1 \]

14339

\[ {} 2 x y y^{\prime }+y^{2} = -1 \]

14340

\[ {} y^{\prime } = \frac {1-x y}{x^{2}} \]

14341

\[ {} y^{\prime } = -\frac {y \left (y+2 x \right )}{x \left (x +2 y\right )} \]

14342

\[ {} y^{\prime } = \frac {y^{2}}{1-x y} \]

14343

\[ {} y^{\prime } = 4 y+1 \]

14344

\[ {} y^{\prime } = x y+2 \]

14345

\[ {} y^{\prime } = \frac {y}{x} \]

14346

\[ {} y^{\prime } = \frac {y}{x -1}+x^{2} \]

14347

\[ {} y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]

14348

\[ {} y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]

14349

\[ {} y^{\prime } = \cot \left (x \right ) y+\sin \left (x \right ) \]

14350

\[ {} x -y y^{\prime } = 0 \]

14351

\[ {} y-x y^{\prime } = 0 \]

14352

\[ {} x^{2}-y+x y^{\prime } = 0 \]

14353

\[ {} x y \left (1-y\right )-2 y^{\prime } = 0 \]

14354

\[ {} x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

14355

\[ {} y \left (2 x -1\right )+x \left (1+x \right ) y^{\prime } = 0 \]

14356

\[ {} y^{\prime } = \frac {1}{x -1} \]

14357

\[ {} y^{\prime } = x +y \]

14358

\[ {} y^{\prime } = \frac {y}{x} \]

14359

\[ {} y^{\prime } = \frac {y}{x} \]

14360

\[ {} y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

14361

\[ {} y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

14362

\[ {} y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

14363

\[ {} y^{\prime } = y^{2} \]

14364

\[ {} y^{\prime } = y^{2} \]

14365

\[ {} y^{\prime } = y^{2} \]

14366

\[ {} y^{\prime } = y^{3} \]

14367

\[ {} y^{\prime } = y^{3} \]

14368

\[ {} y^{\prime } = y^{3} \]

14369

\[ {} y^{\prime } = -\frac {3 x^{2}}{2 y} \]

14370

\[ {} y^{\prime } = -\frac {3 x^{2}}{2 y} \]

14371

\[ {} y^{\prime } = -\frac {3 x^{2}}{2 y} \]

14372

\[ {} y^{\prime } = -\frac {3 x^{2}}{2 y} \]

14373

\[ {} y^{\prime } = \frac {\sqrt {y}}{x} \]

14374

\[ {} y^{\prime } = \frac {\sqrt {y}}{x} \]

14375

\[ {} y^{\prime } = \frac {\sqrt {y}}{x} \]

14376

\[ {} y^{\prime } = \frac {\sqrt {y}}{x} \]

14377

\[ {} y^{\prime } = 3 x y^{{1}/{3}} \]

14378

\[ {} y^{\prime } = 3 x y^{{1}/{3}} \]

14379

\[ {} y^{\prime } = 3 x y^{{1}/{3}} \]

14380

\[ {} y^{\prime } = 3 x y^{{1}/{3}} \]

14381

\[ {} y^{\prime } = 3 x y^{{1}/{3}} \]

14382

\[ {} y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]

14383

\[ {} y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]

14384

\[ {} y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]

14385

\[ {} y^{\prime } = \frac {y}{y-x} \]

14386

\[ {} y^{\prime } = \frac {y}{y-x} \]

14387

\[ {} y^{\prime } = \frac {y}{y-x} \]

14388

\[ {} y^{\prime } = \frac {y}{y-x} \]

14389

\[ {} y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

14390

\[ {} y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

14391

\[ {} y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

14392

\[ {} y^{\prime } = x \sqrt {1-y^{2}} \]

14393

\[ {} y^{\prime } = x \sqrt {1-y^{2}} \]

14394

\[ {} y^{\prime } = x \sqrt {1-y^{2}} \]

14395

\[ {} y^{\prime } = x \sqrt {1-y^{2}} \]

14396

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

14397

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

14398

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

14399

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

14400

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]