|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+6 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-10 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 12 x \left (t \right )+18 y \left (t \right ), y^{\prime }\left (t \right ) = -8 x \left (t \right )-12 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x +y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+\frac {y}{x} = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{\prime \prime }+x+x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x-x^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x+x^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\frac {1}{2 y} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-\frac {y}{x} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-2 \sqrt {{| y|}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-y^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-\sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y^{\prime }-10 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}-9 x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = x^{6}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = x^{2}+2 x -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 3 y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \ln \left (x \right ) y^{\prime }-\left (\ln \left (x \right )+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✗ |
✗ |
✓ |
|
|
\[
{} y^{\prime } = 1-x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1-y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y+1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y^{2}-4
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 4-y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = -x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}-x^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x}{y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y^{2}-3 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x^{3}+y^{3}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = {| y|}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = {\mathrm e}^{x -y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \ln \left (x +y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {2 x -y}{3 y+x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1}{\sqrt {15-x^{2}-y^{2}}}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = \frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \frac {x y}{x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1}{x y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \ln \left (-1+y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y}{y-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|