6.143 Problems 14201 to 14300

Table 6.285: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

14201

\[ {} x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

14202

\[ {} y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

14203

\[ {} x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \]

14204

\[ {} 2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

14205

\[ {} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

14206

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+6 y \left (t \right )] \]

14207

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-10 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

14208

\[ {} [x^{\prime }\left (t \right ) = 12 x \left (t \right )+18 y \left (t \right ), y^{\prime }\left (t \right ) = -8 x \left (t \right )-12 y \left (t \right )] \]

14209

\[ {} y^{\prime } = x +y^{2} \]

14210

\[ {} y^{\prime }+\frac {y}{x} = {\mathrm e}^{x} \]

14211

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )] \]

14212

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

14213

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

14214

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

14215

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )] \]

14216

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

14217

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )] \]

14218

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

14219

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

14220

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

14221

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

14222

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right )] \]

14223

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

14224

\[ {} [x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = x \left (t \right )] \]

14225

\[ {} x^{\prime \prime }+x-x^{3} = 0 \]

14226

\[ {} x^{\prime \prime }+x+x^{3} = 0 \]

14227

\[ {} x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \]

14228

\[ {} x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \]

14229

\[ {} x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \]

14230

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

14231

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

14232

\[ {} x y^{\prime }-y = 0 \]

14233

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

14234

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

14235

\[ {} x^{2} y^{\prime \prime }-2 y = 0 \]

14236

\[ {} y^{\prime }+\frac {1}{2 y} = 0 \]

14237

\[ {} y^{\prime }-\frac {y}{x} = 1 \]

14238

\[ {} y^{\prime }-2 \sqrt {{| y|}} = 0 \]

14239

\[ {} x^{2} y^{\prime }+2 x y = 0 \]

14240

\[ {} y^{\prime }-y^{2} = 1 \]

14241

\[ {} 2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

14242

\[ {} x y^{\prime }-\sin \left (x \right ) = 0 \]

14243

\[ {} y^{\prime }+3 y = 0 \]

14244

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

14245

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14246

\[ {} y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

14247

\[ {} 2 x y^{\prime }-y = 0 \]

14248

\[ {} x^{2} y^{\prime \prime }-x y^{\prime } = 0 \]

14249

\[ {} x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

14250

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

14251

\[ {} {y^{\prime }}^{2}-4 y = 0 \]

14252

\[ {} {y^{\prime }}^{2}-9 x y = 0 \]

14253

\[ {} {y^{\prime }}^{2} = x^{6} \]

14254

\[ {} y^{\prime }-2 x y = 0 \]

14255

\[ {} y^{\prime }+y = x^{2}+2 x -1 \]

14256

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

14257

\[ {} y^{\prime } = x \sqrt {y} \]

14258

\[ {} y^{\prime \prime }-y = 0 \]

14259

\[ {} y^{\prime } = 3 y^{{2}/{3}} \]

14260

\[ {} x \ln \left (x \right ) y^{\prime }-\left (\ln \left (x \right )+1\right ) y = 0 \]

14261

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14262

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14263

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14264

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14265

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

14266

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14267

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14268

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14269

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14270

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14271

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14272

\[ {} y^{\prime } = 1-x \]

14273

\[ {} y^{\prime } = x -1 \]

14274

\[ {} y^{\prime } = 1-y \]

14275

\[ {} y^{\prime } = y+1 \]

14276

\[ {} y^{\prime } = y^{2}-4 \]

14277

\[ {} y^{\prime } = 4-y^{2} \]

14278

\[ {} y^{\prime } = x y \]

14279

\[ {} y^{\prime } = -x y \]

14280

\[ {} y^{\prime } = x^{2}-y^{2} \]

14281

\[ {} y^{\prime } = y^{2}-x^{2} \]

14282

\[ {} y^{\prime } = x +y \]

14283

\[ {} y^{\prime } = x y \]

14284

\[ {} y^{\prime } = \frac {x}{y} \]

14285

\[ {} y^{\prime } = \frac {y}{x} \]

14286

\[ {} y^{\prime } = 1+y^{2} \]

14287

\[ {} y^{\prime } = y^{2}-3 y \]

14288

\[ {} y^{\prime } = x^{3}+y^{3} \]

14289

\[ {} y^{\prime } = {| y|} \]

14290

\[ {} y^{\prime } = {\mathrm e}^{x -y} \]

14291

\[ {} y^{\prime } = \ln \left (x +y\right ) \]

14292

\[ {} y^{\prime } = \frac {2 x -y}{3 y+x} \]

14293

\[ {} y^{\prime } = \frac {1}{\sqrt {15-x^{2}-y^{2}}} \]

14294

\[ {} y^{\prime } = \frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \]

14295

\[ {} y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

14296

\[ {} y^{\prime } = \frac {1}{x y} \]

14297

\[ {} y^{\prime } = \ln \left (-1+y\right ) \]

14298

\[ {} y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]

14299

\[ {} y^{\prime } = \frac {y}{y-x} \]

14300

\[ {} y^{\prime } = \frac {x}{y^{2}} \]