6.147 Problems 14601 to 14700

Table 6.293: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

14601

\[ {} y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]

14602

\[ {} y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]

14603

\[ {} y^{\prime } = -y^{2} \]

14604

\[ {} y^{\prime } = y^{3} \]

14605

\[ {} y^{\prime } = \frac {1}{\left (1+y\right ) \left (t -2\right )} \]

14606

\[ {} y^{\prime } = \frac {1}{\left (y+2\right )^{2}} \]

14607

\[ {} y^{\prime } = \frac {t}{y-2} \]

14608

\[ {} y^{\prime } = 3 y \left (y-2\right ) \]

14609

\[ {} y^{\prime } = 3 y \left (y-2\right ) \]

14610

\[ {} y^{\prime } = 3 y \left (y-2\right ) \]

14611

\[ {} y^{\prime } = 3 y \left (y-2\right ) \]

14612

\[ {} y^{\prime } = y^{2}-4 y-12 \]

14613

\[ {} y^{\prime } = y^{2}-4 y-12 \]

14614

\[ {} y^{\prime } = y^{2}-4 y-12 \]

14615

\[ {} y^{\prime } = y^{2}-4 y-12 \]

14616

\[ {} y^{\prime } = \cos \left (y\right ) \]

14617

\[ {} y^{\prime } = \cos \left (y\right ) \]

14618

\[ {} y^{\prime } = \cos \left (y\right ) \]

14619

\[ {} y^{\prime } = \cos \left (y\right ) \]

14620

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14621

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14622

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14623

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14624

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14625

\[ {} w^{\prime } = \left (1-w\right ) \sin \left (w\right ) \]

14626

\[ {} y^{\prime } = \frac {1}{y-2} \]

14627

\[ {} v^{\prime } = -v^{2}-2 v-2 \]

14628

\[ {} w^{\prime } = 3 w^{3}-12 w^{2} \]

14629

\[ {} y^{\prime } = 1+\cos \left (y\right ) \]

14630

\[ {} y^{\prime } = \tan \left (y\right ) \]

14631

\[ {} y^{\prime } = y \ln \left ({| y|}\right ) \]

14632

\[ {} w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \]

14633

\[ {} y^{\prime } = y^{2}-4 y+2 \]

14634

\[ {} y^{\prime } = y^{2}-4 y+2 \]

14635

\[ {} y^{\prime } = y^{2}-4 y+2 \]

14636

\[ {} y^{\prime } = y^{2}-4 y+2 \]

14637

\[ {} y^{\prime } = y^{2}-4 y+2 \]

14638

\[ {} y^{\prime } = y^{2}-4 y+2 \]

14639

\[ {} y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \]

14640

\[ {} y^{\prime } = y-y^{2} \]

14641

\[ {} y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

14642

\[ {} y^{\prime } = y^{3}-y^{2} \]

14643

\[ {} y^{\prime } = \cos \left (\frac {\pi y}{2}\right ) \]

14644

\[ {} y^{\prime } = y^{2}-y \]

14645

\[ {} y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

14646

\[ {} y^{\prime } = y^{2}-y^{3} \]

14647

\[ {} y^{\prime } = -4 y+9 \,{\mathrm e}^{-t} \]

14648

\[ {} y^{\prime } = -4 y+3 \,{\mathrm e}^{-t} \]

14649

\[ {} y^{\prime } = -3 y+4 \cos \left (2 t \right ) \]

14650

\[ {} y^{\prime } = 2 y+\sin \left (2 t \right ) \]

14651

\[ {} y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t} \]

14652

\[ {} y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \]

14653

\[ {} y^{\prime }+2 y = {\mathrm e}^{\frac {t}{3}} \]

14654

\[ {} y^{\prime }-2 y = 3 \,{\mathrm e}^{-2 t} \]

14655

\[ {} y^{\prime }+y = \cos \left (2 t \right ) \]

14656

\[ {} y^{\prime }+3 y = \cos \left (2 t \right ) \]

14657

\[ {} y^{\prime }-2 y = 7 \,{\mathrm e}^{2 t} \]

14658

\[ {} y^{\prime }+2 y = 3 t^{2}+2 t -1 \]

14659

\[ {} y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t} \]

14660

\[ {} y^{\prime }+y = t^{3}+\sin \left (3 t \right ) \]

14661

\[ {} y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \]

14662

\[ {} y^{\prime }+y = \cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \]

14663

\[ {} y^{\prime } = -\frac {y}{t}+2 \]

14664

\[ {} y^{\prime } = \frac {3 y}{t}+t^{5} \]

14665

\[ {} y^{\prime } = -\frac {y}{t +1}+t^{2} \]

14666

\[ {} y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

14667

\[ {} y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \]

14668

\[ {} y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t} \]

14669

\[ {} y^{\prime } = -\frac {y}{t +1}+2 \]

14670

\[ {} y^{\prime } = \frac {y}{t +1}+4 t^{2}+4 t \]

14671

\[ {} y^{\prime } = -\frac {y}{t}+2 \]

14672

\[ {} y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

14673

\[ {} y^{\prime }-\frac {2 y}{t} = 2 t^{2} \]

14674

\[ {} y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t} \]

14675

\[ {} y^{\prime } = \sin \left (t \right ) y+4 \]

14676

\[ {} y^{\prime } = t^{2} y+4 \]

14677

\[ {} y^{\prime } = \frac {y}{t^{2}}+4 \cos \left (t \right ) \]

14678

\[ {} y^{\prime } = y+4 \cos \left (t^{2}\right ) \]

14679

\[ {} y^{\prime } = -y \,{\mathrm e}^{-t^{2}}+\cos \left (t \right ) \]

14680

\[ {} y^{\prime } = \frac {y}{\sqrt {t^{3}-3}}+t \]

14681

\[ {} y^{\prime } = a t y+4 \,{\mathrm e}^{-t^{2}} \]

14682

\[ {} y^{\prime } = t^{r} y+4 \]

14683

\[ {} v^{\prime }+\frac {2 v}{5} = 3 \cos \left (2 t \right ) \]

14684

\[ {} y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

14685

\[ {} y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 t} \]

14686

\[ {} y^{\prime } = 3 y \]

14687

\[ {} y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

14688

\[ {} y^{\prime } = -\sin \left (y\right )^{5} \]

14689

\[ {} y^{\prime } = \frac {\left (t^{2}-4\right ) \left (1+y\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \]

14690

\[ {} y^{\prime } = \sin \left (y\right )^{2} \]

14691

\[ {} y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \]

14692

\[ {} y^{\prime } = y+{\mathrm e}^{-t} \]

14693

\[ {} y^{\prime } = 3-2 y \]

14694

\[ {} y^{\prime } = t y \]

14695

\[ {} y^{\prime } = 3 y+{\mathrm e}^{7 t} \]

14696

\[ {} y^{\prime } = \frac {t y}{t^{2}+1} \]

14697

\[ {} y^{\prime } = -5 y+\sin \left (3 t \right ) \]

14698

\[ {} y^{\prime } = t +\frac {2 y}{t +1} \]

14699

\[ {} y^{\prime } = 3+y^{2} \]

14700

\[ {} y^{\prime } = 2 y-y^{2} \]