6.28 Problems 2701 to 2800

Table 6.55: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

2701

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-{\mathrm e}^{t}] \]

2702

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )] \]

2703

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+2 y \left (t \right )] \]

2704

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-3 y \left (t \right )] \]

2705

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

2706

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+5 y \left (t \right )+4 \,{\mathrm e}^{t} \cos \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right )] \]

2707

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+{\mathrm e}^{t}] \]

2708

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right )+\sin \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )+\tan \left (t \right )] \]

2709

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+\textit {f\_1} \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+f_{2} \left (t \right )] \]

2710

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

2711

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

2712

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

2713

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

2714

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = 0 \]

2715

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

2716

\[ {} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

2717

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

2718

\[ {} y^{\prime \prime \prime }+y^{\prime } = \tan \left (t \right ) \]

2719

\[ {} y^{\prime \prime \prime \prime }-y = g \left (t \right ) \]

2720

\[ {} y^{\prime \prime \prime \prime }+y = g \left (t \right ) \]

2721

\[ {} y^{\prime \prime \prime }+y^{\prime } = 2 t^{2}+4 \sin \left (t \right ) \]

2722

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = t +\cos \left (t \right )+2 \,{\mathrm e}^{-2 t} \]

2723

\[ {} y^{\prime \prime \prime \prime }-y = t +\sin \left (t \right ) \]

2724

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = t^{2} \sin \left (t \right ) \]

2725

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = t^{2} \]

2726

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = t +{\mathrm e}^{-t} \]

2727

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = t^{3} {\mathrm e}^{-t} \]

2728

\[ {} [x_{1}^{\prime }\left (t \right ) = 6 x_{1} \left (t \right )-3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )] \]

2729

\[ {} [x_{1}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )+3 x_{2} \left (t \right )] \]

2730

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+4 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+2 x_{2} \left (t \right )+3 x_{3} \left (t \right )] \]

2731

\[ {} [x_{1}^{\prime }\left (t \right ) = 7 x_{1} \left (t \right )-x_{2} \left (t \right )+6 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -10 x_{1} \left (t \right )+4 x_{2} \left (t \right )-12 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )] \]

2732

\[ {} [x_{1}^{\prime }\left (t \right ) = -7 x_{1} \left (t \right )+6 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 6 x_{1} \left (t \right )+2 x_{3} \left (t \right )] \]

2733

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )+3 x_{3} \left (t \right )+6 x_{4} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+6 x_{2} \left (t \right )+9 x_{3} \left (t \right )+18 x_{4} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )+10 x_{2} \left (t \right )+15 x_{3} \left (t \right )+30 x_{4} \left (t \right ), x_{4}^{\prime }\left (t \right ) = 7 x_{1} \left (t \right )+14 x_{2} \left (t \right )+21 x_{3} \left (t \right )+42 x_{4} \left (t \right )] \]

2734

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+x_{2} \left (t \right )] \]

2735

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+2 x_{2} \left (t \right )] \]

2736

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+3 x_{2} \left (t \right )-x_{3} \left (t \right )] \]

2737

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )+10 x_{2} \left (t \right )+2 x_{3} \left (t \right )] \]

2738

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -x_{2} \left (t \right )-2 x_{3} \left (t \right )] \]

2739

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+x_{2} \left (t \right )-3 x_{3} \left (t \right )] \]

2740

\[ {} [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )] \]

2741

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-5 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{3} \left (t \right )] \]

2742

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )] \]

2743

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-x_{3} \left (t \right )] \]

2744

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

2745

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

2746

\[ {} [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

2747

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -3 x_{4} \left (t \right ), x_{4}^{\prime }\left (t \right ) = 3 x_{3} \left (t \right )] \]

2748

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{3} \left (t \right )] \]

2749

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{3} \left (t \right )] \]

2750

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-3 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right )] \]

2751

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+4 x_{3} \left (t \right )] \]

2752

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{3} \left (t \right )] \]

2753

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{3} \left (t \right ), x_{4}^{\prime }\left (t \right ) = -x_{3} \left (t \right )+2 x_{4} \left (t \right )] \]

2754

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right )] \]

2755

\[ {} [x_{1}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 10 x_{1} \left (t \right )+9 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )-3 x_{2} \left (t \right )+x_{3} \left (t \right )] \]

2756

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )-3 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+4 x_{3} \left (t \right )] \]

2757

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{3} \left (t \right ), x_{4}^{\prime }\left (t \right ) = 2 x_{3} \left (t \right )+3 x_{4} \left (t \right )] \]

2758

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )+{\mathrm e}^{t} \cos \left (2 t \right )] \]

2759

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+{\mathrm e}^{c t}, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )] \]

2760

\[ {} [x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+5 x_{2} \left (t \right )+4 \,{\mathrm e}^{t} \cos \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

2761

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-4 x_{2} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+{\mathrm e}^{t}] \]

2762

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-5 x_{2} \left (t \right )+\sin \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+\tan \left (t \right )] \]

2763

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right )+f_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+f_{2} \left (t \right )] \]

2764

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{3} \left (t \right )+{\mathrm e}^{2 t}, x_{2}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{2} \left (t \right )+3 x_{3} \left (t \right )+{\mathrm e}^{2 t}] \]

2765

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )-2 x_{3} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right )] \]

2766

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+{\mathrm e}^{3 t}, x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )+{\mathrm e}^{3 t}] \]

2767

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )-t^{2}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )+2 t] \]

2768

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )+2 x_{3} \left (t \right )+\sin \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right )] \]

2769

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )-3 x_{3} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+4 x_{3} \left (t \right )-{\mathrm e}^{t}] \]

2770

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )+1, x_{2}^{\prime }\left (t \right ) = -4 x_{2} \left (t \right )-x_{3} \left (t \right )+t, x_{3}^{\prime }\left (t \right ) = 5 x_{2} \left (t \right )+{\mathrm e}^{t}] \]

2771

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )+{\mathrm e}^{2 t}, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+3 x_{2} \left (t \right )-4 x_{3} \left (t \right )+2 \,{\mathrm e}^{2 t}, x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+x_{2} \left (t \right )-4 x_{3} \left (t \right )+{\mathrm e}^{2 t}] \]

2772

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right )+{\mathrm e}^{3 t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )+x_{3} \left (t \right )-{\mathrm e}^{3 t}, x_{3}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )-{\mathrm e}^{3 t}] \]

2773

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+4 x_{3} \left (t \right )+2 \,{\mathrm e}^{8 t}, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+2 x_{3} \left (t \right )+{\mathrm e}^{8 t}, x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+2 x_{2} \left (t \right )+3 x_{3} \left (t \right )+2 \,{\mathrm e}^{8 t}] \]

2774

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+2 x_{2} \left (t \right )] \]

2775

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

2776

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )+t, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-2 x_{2} \left (t \right )+3 \,{\mathrm e}^{t}] \]

2777

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+2 \,{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+x_{2} \left (t \right )-{\mathrm e}^{t}] \]

2778

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-4 x_{2} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+{\mathrm e}^{t}] \]

2779

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-5 x_{2} \left (t \right )+\sin \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+\tan \left (t \right )] \]

2780

\[ {} [x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+5 x_{2} \left (t \right )+4 \,{\mathrm e}^{t} \cos \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

2781

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right )+f_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+f_{2} \left (t \right )] \]

2782

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-2 x_{2} \left (t \right )+\delta \left (t -\pi \right )] \]

2783

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )+1-\operatorname {Heaviside}\left (t -\pi \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

2784

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )-3 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+4 x_{3} \left (t \right )] \]

2785

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{3} \left (t \right )+{\mathrm e}^{2 t}, x_{2}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{3} \left (t \right )+{\mathrm e}^{2 t}] \]

2786

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )+2 x_{3} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right )] \]

2787

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )+{\mathrm e}^{t} \cos \left (2 t \right )] \]

2788

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{3} \left (t \right ), x_{4}^{\prime }\left (t \right ) = 2 x_{3} \left (t \right )+3 x_{4} \left (t \right )] \]

2789

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-2 y \left (t \right )^{2}-3 x \left (t \right ) y \left (t \right )] \]

2790

\[ {} [x^{\prime }\left (t \right ) = -b x \left (t \right ) y \left (t \right )+m, y^{\prime }\left (t \right ) = b x \left (t \right ) y \left (t \right )-g y \left (t \right )] \]

2791

\[ {} [x^{\prime }\left (t \right ) = a x \left (t \right )-b x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -c y \left (t \right )+d x \left (t \right ) y \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )+x \left (t \right )^{2}+y \left (t \right )^{2}] \]

2792

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-x \left (t \right ) y \left (t \right )^{2}, y^{\prime }\left (t \right ) = -y \left (t \right )-y \left (t \right ) x \left (t \right )^{2}, z^{\prime }\left (t \right ) = 1-z \left (t \right )+x \left (t \right )^{2}] \]

2793

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )^{2}-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right ) \sin \left (\pi y \left (t \right )\right )] \]

2794

\[ {} [x^{\prime }\left (t \right ) = \cos \left (y \left (t \right )\right ), y^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right )-1] \]

2795

\[ {} [x^{\prime }\left (t \right ) = -1-y \left (t \right )-{\mathrm e}^{x \left (t \right )}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ) \left ({\mathrm e}^{x \left (t \right )}-1\right ), z^{\prime }\left (t \right ) = x \left (t \right )+\sin \left (z \left (t \right )\right )] \]

2796

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right ), z^{\prime }\left (t \right ) = {\mathrm e}^{z \left (t \right )}-x \left (t \right )] \]

2797

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )] \]

2798

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+z \left (t \right )-2 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right )-2 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )+4 z \left (t \right )+3 \,{\mathrm e}^{-t}] \]

2799

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right )] \]

2800

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]