5.2.15 Problems 1401 to 1500

Table 5.197: Second order linear ODE

#

ODE

Mathematica

Maple

6976

\[ {}y^{\prime \prime }+4 y = 0 \]

6986

\[ {}y^{\prime \prime }+9 y = 18 \]

6987

\[ {}x y^{\prime \prime }-y^{\prime } = 0 \]

6988

\[ {}y^{\prime \prime } = y^{\prime } \]

6996

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )-2 \sin \left (x \right ) \]

6997

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

6998

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

6999

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \sec \left (\ln \left (x \right )\right ) \]

7002

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

7003

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x^{2}} \]

7008

\[ {}y^{\prime \prime }+9 y = 5 \]

7010

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

7011

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

7012

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

7013

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

7349

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

7350

\[ {}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]

7351

\[ {}y^{\prime \prime }-\frac {y}{4} = 0 \]

7352

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]

7353

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]

7354

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

7355

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]

7356

\[ {}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]

7357

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]

7358

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

7360

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]

7361

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]

7362

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

7363

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]

7364

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]

7365

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \]

7366

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \]

7367

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \]

7368

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \]

7369

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \]

7370

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

7371

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \]

7372

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]

7373

\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]

7374

\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

7375

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]

7376

\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]

7377

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (t -1\right ) \]

7378

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]

7379

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]

7380

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )+\delta \left (t -2\right ) \]

7381

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]

7478

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

7479

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

7480

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

7481

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

7482

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

7483

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

7484

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7486

\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

7487

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

7489

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

7490

\[ {}y^{\prime \prime }+x y^{\prime }+y = 2 x \,{\mathrm e}^{x}-1 \]

7491

\[ {}x y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

7492

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

7493

\[ {}x^{3} y^{\prime \prime }+x y^{\prime }-y = \cos \left (\frac {1}{x}\right ) \]

7494

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

7495

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1 \]

7496

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]

7497

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \left (x \right )\right )^{2} \]

7498

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right ) \]

7499

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

7500

\[ {}\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \]

7501

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

7517

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

7518

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]

7519

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

7520

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 1+3 x \]

7521

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{2 x} x \]

7522

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]

7523

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

7524

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

7525

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

7527

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

7535

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

7536

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

7537

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]

7538

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

7540

\[ {}y^{\prime \prime }+4 y = x^{2} \]

7541

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

7542

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y = 0 \]

7545

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7546

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]

7551

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

7557

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

7558

\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]

7559

\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (1+x \right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \]

7581

\[ {}y^{\prime \prime } = x +2 \]

7585

\[ {}y^{\prime \prime }-y = 0 \]

7586

\[ {}y^{\prime \prime }+4 y = 0 \]

7587

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

7589

\[ {}y^{\prime \prime } = 1+3 x \]

7612

\[ {}y^{\prime \prime }-4 y = 0 \]

7613

\[ {}3 y^{\prime \prime }+2 y = 0 \]

7614

\[ {}y^{\prime \prime }+16 y = 0 \]