# |
ODE |
Mathematica |
Maple |
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
✓ |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0
\] |
✓ |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0
\] |
✓ |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0
\] |
✓ |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (9 x^{2}+6\right ) y = 0
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right )
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )
\] |
✓ |
✓ |
|
\[
{}2 \left (1+y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0
\] |
✓ |
✓ |
|
\[
{}u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right )
\] |
✗ |
✗ |
|
\[
{}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\] |
✓ |
✓ |
|
\[
{}R^{\prime \prime } = -\frac {k}{R^{2}}
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0
\] |
✗ |
✗ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime }+7 y^{\prime }-4 y = 0
\] |
✓ |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
✗ |
✗ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
✗ |
✗ |
|
\[
{}2 y^{\prime \prime }-3 y^{2} = 0
\] |
✗ |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime }
\] |
✓ |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = 2 y {y^{\prime }}^{3}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-\frac {y}{4} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
✓ |
✓ |
|
\[
{}9 y^{\prime \prime }-6 y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\] |
✓ |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0
\] |
✗ |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0
\] |
✓ |
✓ |
|
\[
{}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0
\] |
✓ |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0
\] |
✗ |
✗ |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
✓ |
✓ |
|
\[
{}s^{\prime \prime }+2 s^{\prime }+s = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0
\] |
✓ |
✓ |
|
\[
{}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0
\] |
✓ |
✓ |
|
\[
{}x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2}
\] |
✓ |
✓ |
|
\[
{}x x^{\prime \prime }-{x^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y = 0
\] |
✓ |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0
\] |
✓ |
✓ |
|
\[
{}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0
\] |
✓ |
✓ |
|
\[
{}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0
\] |
✓ |
✓ |
|
\[
{}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (1+x \right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }-y^{\prime } y^{2}-{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+k^{2} y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
✓ |
✓ |
|
\[
{}3 y^{\prime \prime }+2 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 i y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+10 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 i y^{\prime }-y = 0
\] |
✓ |
✓ |
|