5.12.9 Problems 801 to 900

Table 5.835: Third and higher order linear ODE

#

ODE

Mathematica

Maple

13530

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = {\mathrm e}^{x} x^{2} \]

13541

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

13542

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

13543

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0 \]

13549

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3} \]

13654

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right ) \]

13655

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t} \]

13663

\[ {}t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x = 0 \]

13665

\[ {}t^{3} x^{\prime \prime \prime }-\left (3+t \right ) t^{2} x^{\prime \prime }+2 t \left (3+t \right ) x^{\prime }-2 \left (3+t \right ) x = 0 \]

13780

\[ {}x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t} \]

13781

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right ) \]

13782

\[ {}x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right ) \]

13783

\[ {}x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t} \]

13902

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

13910

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

13912

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

13913

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

13924

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

13929

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

13930

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

13933

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

13937

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

13938

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

13959

\[ {}y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

13961

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

13963

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

13965

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

13971

\[ {}y^{\prime \prime \prime } = 1 \]

13981

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

13983

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

14030

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

14038

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]

14039

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]

14040

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]

14041

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]

14042

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]

14043

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]

14044

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

14081

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]

14082

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]

14083

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]

14084

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]

14085

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]

14086

\[ {}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]

14095

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

14097

\[ {}y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

14158

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

14225

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14227

\[ {}x y^{\prime \prime \prime } = 2 \]

14246

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

14247

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14248

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-y a^{3} = 0 \]

14249

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

14250

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

14251

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

14252

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

14253

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

14264

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

14265

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

14266

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right ) \]

14325

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

14344

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

14481

\[ {}x y^{\prime \prime \prime }+x y^{\prime } = 4 \]

14491

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

14497

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

14498

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

14499

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

14500

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

14501

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

14502

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14503

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

14504

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

14505

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

14507

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

14508

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

14510

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

14511

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

14512

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

14513

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 \,{\mathrm e}^{x} x^{2} \]

14514

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

14515

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

14516

\[ {}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

14517

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

14518

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]

14519

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]

14520

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]

14527

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

14534

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]

14542

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

15000

\[ {}y^{\prime \prime \prime \prime } = 1 \]

15224

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

15225

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

15227

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

15247

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

15248

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

15267

\[ {}y^{\prime \prime \prime }+y = 0 \]

15270

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

15292

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

15293

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

15294

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]