5.18.2 Problems 101 to 163

Table 5.891: Second order, non-linear and non-homogeneous

#

ODE

Mathematica

Maple

12992

\[ {}\left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2} \]

12994

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+1 = 0 \]

13012

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

13019

\[ {}x \left (x +2 y\right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

13020

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

13908

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

13909

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

13916

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

13960

\[ {}y^{\prime \prime }+y y^{\prime } = 1 \]

13978

\[ {}y^{\prime \prime } y = 1 \]

14005

\[ {}x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

14006

\[ {}\frac {x y^{\prime \prime }}{1+y}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (1+y\right )^{2}} = x \sin \left (x \right ) \]

14008

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

14010

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

14233

\[ {}{y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]

14275

\[ {}y^{\prime \prime } y = 1+{y^{\prime }}^{2} \]

14986

\[ {}y^{2} y^{\prime \prime } = 8 x^{2} \]

15216

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

15219

\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

15235

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

15250

\[ {}2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

15786

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]

15787

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

16622

\[ {}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]

16914

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2} = 1 \]

16932

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16945

\[ {}y^{\prime \prime } y = 1+{y^{\prime }}^{2} \]

16946

\[ {}2 y^{\prime \prime } y = 1+{y^{\prime }}^{2} \]

16947

\[ {}y^{3} y^{\prime \prime } = -1 \]

17184

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2}+1 = 0 \]

17564

\[ {}y^{\prime \prime }-\frac {t}{y} = \frac {1}{\pi } \]

17685

\[ {}y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17686

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17974

\[ {}2 \left (2 a -y\right ) y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

17980

\[ {}y^{2} \left (x^{2} y^{\prime \prime }-x y^{\prime }+y\right ) = x^{3} \]

17981

\[ {}x^{2} y^{2} y^{\prime \prime }-3 y^{2} y^{\prime } x +4 y^{3}+x^{6} = 0 \]

17983

\[ {}x \left (x^{2} y^{\prime }+2 x y\right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 x y y^{\prime }+4 y^{2}-1 = 0 \]

17984

\[ {}x \left (x y+1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 x y+2\right ) y^{\prime }+y^{2}+1 = 0 \]

18043

\[ {}y^{\prime \prime } = y^{2}+x \]

18191

\[ {}2 y^{\prime \prime } y = 1+{y^{\prime }}^{2} \]

18197

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18198

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18222

\[ {}\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x \]

18600

\[ {}1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0 \]

18703

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2} = 1 \]

18704

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

18963

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

18966

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2} = 1 \]

18972

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

19000

\[ {}y^{3} y^{\prime \prime } = a \]

19002

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

19008

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19034

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2}+1 = 0 \]

19375

\[ {}y^{3} y^{\prime \prime } = a \]

19394

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2} = 1 \]

19398

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2}+1 = 0 \]

19401

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

19403

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

19405

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

19406

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19407

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19598

\[ {}2 x^{2} \cos \left (y\right ) y^{\prime \prime }-2 x^{2} \sin \left (y\right ) {y^{\prime }}^{2}+x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = \ln \left (x \right ) \]

19606

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]