5.20.4 Problems 301 to 400

Table 5.913: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

937

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0 \]

938

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0 \]

939

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

940

\[ {}y^{\prime \prime \prime \prime }-16 y^{\prime \prime }+16 y = 0 \]

941

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

942

\[ {}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0 \]

943

\[ {}y^{\prime \prime \prime \prime } = 16 y \]

944

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

945

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

946

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0 \]

947

\[ {}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]

948

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0 \]

949

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

950

\[ {}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

951

\[ {}y^{\prime \prime \prime }+27 y = 0 \]

952

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0 \]

953

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

954

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

955

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y = 0 \]

956

\[ {}y^{\prime \prime \prime } = y \]

957

\[ {}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y \]

1249

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

1250

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

1251

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

1252

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

1253

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

1254

\[ {}4 y^{\prime \prime }-9 y = 0 \]

1255

\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

1256

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

1257

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

1258

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

1259

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]

1260

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

1261

\[ {}y^{\prime \prime }+5 y^{\prime }+3 y = 0 \]

1262

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]

1263

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

1264

\[ {}4 y^{\prime \prime }-y = 0 \]

1265

\[ {}y^{\prime \prime }-y = 0 \]

1266

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

1267

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

1268

\[ {}4 y^{\prime \prime }-y = 0 \]

1269

\[ {}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0 \]

1270

\[ {}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0 \]

1271

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

1272

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

1273

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

1274

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

1275

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

1276

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

1277

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

1278

\[ {}4 y^{\prime \prime }+9 y = 0 \]

1279

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

1280

\[ {}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0 \]

1281

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

1282

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

1283

\[ {}y^{\prime \prime }+4 y = 0 \]

1284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

1285

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

1286

\[ {}y^{\prime \prime }+y = 0 \]

1287

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

1288

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

1289

\[ {}u^{\prime \prime }-u^{\prime }+2 u = 0 \]

1290

\[ {}5 u^{\prime \prime }+2 u^{\prime }+7 u = 0 \]

1291

\[ {}y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]

1292

\[ {}y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y = 0 \]

1303

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

1304

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

1305

\[ {}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

1306

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

1307

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 0 \]

1308

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

1309

\[ {}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0 \]

1310

\[ {}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0 \]

1311

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

1312

\[ {}2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

1313

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

1314

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

1315

\[ {}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0 \]

1316

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

1317

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

1318

\[ {}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0 \]

1333

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

1334

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

1335

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

1336

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

1337

\[ {}y^{\prime \prime }+y = \tan \left (t \right ) \]

1338

\[ {}y^{\prime \prime }+9 y = 9 \sec \left (3 t \right )^{2} \]

1339

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 t}}{t^{2}} \]

1340

\[ {}y^{\prime \prime }+4 y = 3 \csc \left (2 t \right ) \]

1341

\[ {}y^{\prime \prime }+y = 2 \sec \left (\frac {t}{2}\right ) \]

1342

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

1343

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

1344

\[ {}y^{\prime \prime }+4 y = g \left (t \right ) \]

1355

\[ {}u^{\prime \prime }+2 u = 0 \]

1356

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0 \]

1357

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (\frac {t}{4}\right ) \]

1358

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (2 t \right ) \]

1359

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (6 t \right ) \]

1462

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y = t \]

1464

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]