5.20.16 Problems 1501 to 1600

Table 5.937: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

7521

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{2 x} x \]

7522

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]

7529

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

7530

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]

7531

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]

7534

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

7536

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

7537

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]

7538

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

7539

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

7540

\[ {}y^{\prime \prime }+4 y = x^{2} \]

7541

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

7554

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

7581

\[ {}y^{\prime \prime } = x +2 \]

7582

\[ {}y^{\prime \prime \prime } = x^{2} \]

7585

\[ {}y^{\prime \prime }-y = 0 \]

7586

\[ {}y^{\prime \prime }+4 y = 0 \]

7587

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

7589

\[ {}y^{\prime \prime } = 1+3 x \]

7612

\[ {}y^{\prime \prime }-4 y = 0 \]

7613

\[ {}3 y^{\prime \prime }+2 y = 0 \]

7614

\[ {}y^{\prime \prime }+16 y = 0 \]

7615

\[ {}y^{\prime \prime } = 0 \]

7616

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]

7617

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

7618

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

7619

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

7620

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

7621

\[ {}y^{\prime \prime }+y = 0 \]

7622

\[ {}y^{\prime \prime }+y = 0 \]

7623

\[ {}y^{\prime \prime }+y = 0 \]

7624

\[ {}y^{\prime \prime }+y = 0 \]

7625

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

7626

\[ {}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]

7627

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

7628

\[ {}y^{\prime \prime }+10 y = 0 \]

7629

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

7630

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

7631

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

7632

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = x \]

7633

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

7634

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

7635

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

7636

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

7637

\[ {}4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

7638

\[ {}6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

7639

\[ {}y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right ) \]

7640

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

7641

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

7642

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

7643

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

7644

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

7645

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

7646

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

7647

\[ {}y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

7648

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

7649

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]

7650

\[ {}y^{\prime \prime }+y = 0 \]

7651

\[ {}y^{\prime \prime }-y = 0 \]

7652

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

7653

\[ {}y^{\left (5\right )}+2 y = 0 \]

7654

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

7655

\[ {}y^{\prime \prime \prime }+y = 0 \]

7656

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

7657

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

7658

\[ {}y^{\prime \prime \prime \prime }-k^{4} y = 0 \]

7659

\[ {}y^{\prime \prime \prime }-y = x \]

7660

\[ {}y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

7661

\[ {}y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

7662

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

7663

\[ {}y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

7664

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

7665

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

7666

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

7667

\[ {}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

7668

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

7669

\[ {}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

7670

\[ {}y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

7671

\[ {}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

7672

\[ {}y^{\prime \prime \prime } = x^{2}+\sin \left (x \right ) {\mathrm e}^{-x} \]

7673

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

7759

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

7762

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

7777

\[ {}y^{\prime \prime }+4 y = 0 \]

7778

\[ {}y^{\prime \prime }-4 y = 0 \]

7804

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

7806

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

7823

\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

7907

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

7937

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

7938

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

7939

\[ {}y^{\prime \prime }+8 y = 0 \]

7940

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

7941

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

7942

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

7943

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

7944

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

7945

\[ {}y^{\prime \prime }+y = 0 \]

7946

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

7947

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]