5.20.18 Problems 1701 to 1800

Table 5.941: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

8177

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

8178

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]

8179

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]

8180

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t} \]

8181

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]

8219

\[ {}y^{\prime \prime }+y = 0 \]

8221

\[ {}y^{\prime \prime }-y = 0 \]

8223

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

8225

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

8307

\[ {}y^{\prime \prime }+y = 0 \]

8328

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]

8329

\[ {}y^{\prime \prime }-4 y^{\prime } = 6 \,{\mathrm e}^{3 t}-3 \,{\mathrm e}^{-t} \]

8330

\[ {}y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \]

8331

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{t} \]

8332

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]

8333

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]

8335

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

8338

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8339

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} {\mathrm e}^{2 t} \]

8340

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]

8341

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} \]

8342

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

8343

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

8344

\[ {}y^{\prime \prime }-y = {\mathrm e}^{t} \cos \left (t \right ) \]

8345

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +1 \]

8346

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8347

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]

8351

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

8352

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \operatorname {Heaviside}\left (t -2 \pi \right ) \]

8353

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right ) \]

8354

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

8355

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -4\right )+\operatorname {Heaviside}\left (t -6\right ) \]

8358

\[ {}y^{\prime \prime }+9 y = \cos \left (3 t \right ) \]

8359

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]

8360

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

8361

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \]

8364

\[ {}y^{\prime \prime }+y = \sin \left (t \right )+t \sin \left (t \right ) \]

8367

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \]

8368

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2 \pi \right ) \]

8369

\[ {}y^{\prime \prime }+y = \delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right ) \]

8370

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \]

8371

\[ {}y^{\prime \prime }+2 y^{\prime } = \delta \left (t -1\right ) \]

8372

\[ {}y^{\prime \prime }-2 y^{\prime } = 1+\delta \left (t -2\right ) \]

8373

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -2 \pi \right ) \]

8374

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \delta \left (t -1\right ) \]

8375

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (t -\pi \right )+\delta \left (t -3 \pi \right ) \]

8376

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (t -4\right ) \]

8377

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

8378

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right ) \]

8500

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

8529

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

8530

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

8531

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

8532

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

8705

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

8706

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

8707

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

8708

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

8752

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8753

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8754

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

8755

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

8766

\[ {}y^{\prime \prime } = 0 \]

8767

\[ {}y^{\prime \prime } = 1 \]

8768

\[ {}y^{\prime \prime } = f \left (t \right ) \]

8769

\[ {}y^{\prime \prime } = k \]

8772

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

8773

\[ {}y y^{\prime \prime } = 0 \]

8777

\[ {}y^{2} y^{\prime \prime } = 0 \]

8782

\[ {}a y y^{\prime \prime }+b y = 0 \]

8795

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

8800

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8801

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8802

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8859

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

8861

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8862

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8863

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8864

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8865

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8866

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8867

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8868

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8869

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

8870

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

8871

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

8872

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]

8960

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

8977

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x} \]

8978

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]

9072

\[ {}y^{\prime \prime } = 0 \]

9073

\[ {}{y^{\prime \prime }}^{2} = 0 \]

9074

\[ {}{y^{\prime \prime }}^{n} = 0 \]

9075

\[ {}a y^{\prime \prime } = 0 \]

9076

\[ {}a {y^{\prime \prime }}^{2} = 0 \]

9077

\[ {}a {y^{\prime \prime }}^{n} = 0 \]

9078

\[ {}y^{\prime \prime } = 1 \]

9079

\[ {}{y^{\prime \prime }}^{2} = 1 \]

9080

\[ {}y^{\prime \prime } = x \]

9081

\[ {}{y^{\prime \prime }}^{2} = x \]