5.20.22 Problems 2101 to 2200

Table 5.949: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

13502

\[ {}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

13503

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

13504

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

13505

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

13506

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

13507

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

13508

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

13509

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

13510

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

13511

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

13512

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

13513

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

13514

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

13515

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

13516

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

13517

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

13518

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{2 x}} \]

13519

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]

13520

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

13521

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

13522

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

13530

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = {\mathrm e}^{x} x^{2} \]

13646

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13647

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]

13648

\[ {}y^{\prime \prime }+4 y = 8 \]

13649

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13650

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 18 \,{\mathrm e}^{-t} \sin \left (3 t \right ) \]

13651

\[ {}y^{\prime \prime }+2 y^{\prime }+y = t \,{\mathrm e}^{-2 t} \]

13652

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 \,{\mathrm e}^{-3 t} t \]

13653

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 t \,{\mathrm e}^{2 t} \]

13654

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right ) \]

13655

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t} \]

13656

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0<t <4 \\ 0 & 4<t \end {array}\right . \]

13657

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \left \{\begin {array}{cc} 6 & 0<t <2 \\ 0 & 2<t \end {array}\right . \]

13658

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0<t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]

13659

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \left \{\begin {array}{cc} 3 & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

13660

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} -4 t +8 \pi & 0<t <2 \pi \\ 0 & 2<t \end {array}\right . \]

13661

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <\pi \\ \pi & \pi <t \end {array}\right . \]

13678

\[ {}y^{\prime \prime }+\lambda y = 0 \]

13679

\[ {}y^{\prime \prime }+\lambda y = 0 \]

13680

\[ {}y^{\prime \prime }+\lambda y = 0 \]

13681

\[ {}y^{\prime \prime }+\lambda y = 0 \]

13750

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]

13751

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

13752

\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]

13753

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13754

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]

13755

\[ {}\theta ^{\prime \prime }+4 \theta = 0 \]

13756

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

13757

\[ {}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0 \]

13758

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13759

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = 0 \]

13760

\[ {}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0 \]

13761

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

13762

\[ {}y^{\prime \prime }-4 y = 0 \]

13763

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

13764

\[ {}y^{\prime \prime }+\omega ^{2} y = 0 \]

13765

\[ {}x^{\prime \prime }-4 x = t^{2} \]

13766

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

13767

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \]

13768

\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \]

13769

\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \]

13770

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \]

13771

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \]

13772

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \]

13773

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

13774

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \]

13775

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \]

13776

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \]

13777

\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

13778

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \]

13779

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right ) \]

13780

\[ {}x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t} \]

13781

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right ) \]

13782

\[ {}x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right ) \]

13783

\[ {}x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t} \]

13790

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]

13791

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

13792

\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]

13794

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

13806

\[ {}a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0 \]

13900

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]

13901

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

13902

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

13903

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

13905

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

13907

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

13910

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

13912

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

13913

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

13918

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

13922

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

13923

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

13924

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

13925

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

13929

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

13930

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

13933

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

13934

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

13935

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]