5.20.23 Problems 2201 to 2300

Table 5.951: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

13937

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

13938

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

13941

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

13961

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

13971

\[ {}y^{\prime \prime \prime } = 1 \]

13973

\[ {}y^{\prime \prime } = x^{2}+y \]

13980

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13981

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

13982

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

13983

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

14019

\[ {}y^{\prime \prime }+9 y = 0 \]

14020

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

14021

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14022

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

14023

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

14024

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]

14025

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

14026

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14027

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]

14028

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]

14029

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

14030

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

14031

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

14032

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]

14033

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

14034

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]

14035

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

14036

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]

14037

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]

14038

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]

14039

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]

14040

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]

14041

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]

14042

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]

14043

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]

14044

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

14045

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]

14046

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]

14047

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]

14048

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]

14049

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]

14050

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]

14051

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

14052

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2+t \]

14054

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]

14055

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]

14056

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]

14058

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]

14061

\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]

14062

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \]

14063

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]

14064

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right ) \]

14065

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]

14066

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \]

14067

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]

14068

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]

14069

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]

14070

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]

14071

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]

14072

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]

14073

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]

14074

\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \]

14075

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right ) \]

14076

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]

14077

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right ) \]

14078

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right ) \]

14079

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right ) \]

14081

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]

14082

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]

14083

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]

14084

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]

14085

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]

14086

\[ {}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]

14092

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]

14093

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

14094

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]

14095

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

14096

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]

14097

\[ {}y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

14132

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

14133

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]

14135

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]

14149

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]

14150

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]

14151

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

14159

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

14225

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14228

\[ {}y^{\prime \prime } = a^{2} y \]

14237

\[ {}y^{\prime \prime } = 9 y \]

14238

\[ {}y^{\prime \prime }+y = 0 \]

14239

\[ {}y^{\prime \prime }-y = 0 \]

14240

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

14241

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

14242

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

14243

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

14244

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

14245

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

14246

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

14247

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14248

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-y a^{3} = 0 \]