5.20.25 Problems 2401 to 2500

Table 5.955: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

14898

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t} \]

14899

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t} \]

14900

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t} \]

14901

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

14902

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

14903

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t} \]

14904

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t} \]

14905

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t} \]

14906

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t} \]

14907

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

14908

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

14909

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}} \]

14910

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t} \]

14911

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t} \]

14912

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-\frac {t}{2}} \]

14913

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t} \]

14914

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t} \]

14915

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

14916

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]

14917

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]

14918

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]

14919

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]

14920

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]

14921

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]

14922

\[ {}y^{\prime \prime }+2 y = -3 \]

14923

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{t} \]

14924

\[ {}y^{\prime \prime }+9 y = 6 \]

14925

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]

14926

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]

14927

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]

14928

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]

14929

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]

14930

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]

14931

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]

14932

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]

14933

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]

14934

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]

14935

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]

14936

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]

14937

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]

14938

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]

14939

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]

14940

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]

14941

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

14942

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]

14943

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]

14944

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]

14945

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

14946

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]

14947

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

14948

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]

14949

\[ {}y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

14950

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]

14951

\[ {}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]

14952

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]

14953

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]

14954

\[ {}y^{\prime \prime }+9 y = \cos \left (t \right ) \]

14955

\[ {}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]

14956

\[ {}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]

14957

\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]

14958

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]

14959

\[ {}y^{\prime \prime }+4 y = 8 \]

14960

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]

14961

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]

14962

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (t -4\right ) \]

14963

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]

14964

\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \]

14965

\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]

14966

\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]

14967

\[ {}y^{\prime \prime }+3 y = 5 \delta \left (t -2\right ) \]

14968

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -3\right ) \]

14969

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \delta \left (t -2\right ) \]

14970

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (t -1\right )-3 \delta \left (t -4\right ) \]

14971

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]

14972

\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]

14973

\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \]

14974

\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]

14975

\[ {}y^{\prime \prime }+16 y = 0 \]

14976

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]

14977

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14978

\[ {}y^{\prime \prime }+16 y = t \]

14984

\[ {}y^{\prime \prime } = \frac {1+x}{x -1} \]

14987

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]

14998

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

14999

\[ {}y^{\prime \prime }-3 = x \]

15000

\[ {}y^{\prime \prime \prime \prime } = 1 \]

15211

\[ {}y^{\prime \prime } = y^{\prime } \]

15212

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

15221

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

15223

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

15224

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

15227

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

15231

\[ {}y^{\prime \prime } = y^{\prime } \]

15241

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

15245

\[ {}y^{\prime \prime } = y^{\prime } \]

15246

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

15247

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

15267

\[ {}y^{\prime \prime \prime }+y = 0 \]

15269

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

15270

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]