5.20.26 Problems 2501 to 2600

Table 5.957: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

15272

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

15273

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

15280

\[ {}y^{\prime \prime }+y = 0 \]

15286

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]

15287

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]

15292

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

15293

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

15294

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

15296

\[ {}y^{\prime \prime }+4 y = 0 \]

15297

\[ {}y^{\prime \prime }-4 y = 0 \]

15298

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

15299

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

15307

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

15308

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

15309

\[ {}y^{\prime \prime }-4 y = 0 \]

15310

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

15311

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]

15312

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

15313

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

15314

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

15315

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

15316

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

15317

\[ {}y^{\prime \prime }-25 y = 0 \]

15318

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

15319

\[ {}4 y^{\prime \prime }-y = 0 \]

15320

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

15321

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15322

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15323

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15324

\[ {}y^{\prime \prime }-9 y = 0 \]

15325

\[ {}y^{\prime \prime }-9 y = 0 \]

15326

\[ {}y^{\prime \prime }-9 y = 0 \]

15327

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

15328

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15329

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

15330

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

15331

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

15332

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

15333

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15334

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15335

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15336

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15337

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15338

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15339

\[ {}y^{\prime \prime }+25 y = 0 \]

15340

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

15341

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

15342

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

15343

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

15344

\[ {}4 y^{\prime \prime }+y = 0 \]

15345

\[ {}y^{\prime \prime }+16 y = 0 \]

15346

\[ {}y^{\prime \prime }+16 y = 0 \]

15347

\[ {}y^{\prime \prime }+16 y = 0 \]

15348

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15349

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15350

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15351

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

15352

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

15353

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

15354

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

15355

\[ {}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

15356

\[ {}y^{\prime \prime \prime \prime }-81 y = 0 \]

15357

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

15358

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

15359

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

15360

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

15361

\[ {}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

15362

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

15363

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

15364

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

15365

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

15366

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

15367

\[ {}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]

15368

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]

15369

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

15370

\[ {}y^{\prime \prime \prime }+216 y = 0 \]

15371

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

15372

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

15373

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

15374

\[ {}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

15375

\[ {}16 y^{\prime \prime \prime \prime }-y = 0 \]

15376

\[ {}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

15377

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

15378

\[ {}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

15411

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]

15412

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]

15413

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

15414

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

15415

\[ {}y^{\prime \prime }-9 y = 36 \]

15416

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \]

15417

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \]

15418

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \]

15420

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]

15421

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \]

15422

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \]

15423

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \]

15424

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \]

15432

\[ {}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \]

15433

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x} \]

15434

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x} \]