5.20.24 Problems 2301 to 2400

Table 5.953: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

14249

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

14250

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

14251

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

14252

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

14253

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

14254

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]

14255

\[ {}s^{\prime \prime }-a^{2} s = t +1 \]

14256

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

14257

\[ {}y^{\prime \prime }-y = 5 x +2 \]

14258

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]

14259

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]

14260

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

14261

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

14262

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right ) \]

14263

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]

14264

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

14265

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

14266

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right ) \]

14267

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]

14268

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]

14269

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

14270

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

14271

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \]

14278

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

14281

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

14313

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

14323

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

14324

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14325

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

14335

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

14337

\[ {}y^{\prime \prime }-y = 0 \]

14340

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14341

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14342

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14343

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14480

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]

14486

\[ {}y^{\prime \prime }-y = 0 \]

14487

\[ {}y^{\prime \prime }+y = 0 \]

14490

\[ {}y^{\prime \prime }-y = 0 \]

14491

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

14493

\[ {}y^{\prime \prime }-4 y = 31 \]

14494

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]

14496

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

14497

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

14498

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

14499

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

14500

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

14501

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

14502

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14503

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

14504

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

14505

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

14506

\[ {}y^{\prime \prime }+\alpha y = 0 \]

14507

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

14508

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

14510

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

14511

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

14512

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

14513

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 \,{\mathrm e}^{x} x^{2} \]

14514

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

14515

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

14516

\[ {}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

14517

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

14518

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]

14519

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]

14520

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]

14522

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

14524

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]

14525

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]

14526

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]

14527

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

14530

\[ {}y^{\prime \prime }-9 y = x +2 \]

14531

\[ {}y^{\prime \prime }+9 y = x +2 \]

14532

\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \]

14533

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1 \]

14534

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]

14537

\[ {}y^{\prime \prime }+9 y = 1 \]

14538

\[ {}y^{\prime \prime }+9 y = 18 \,{\mathrm e}^{3 x} \]

14539

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14540

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2} \]

14541

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \sin \left (x \right ) \]

14542

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

14544

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \]

14545

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (x -1\right )^{2} & 1\le x \end {array}\right . \]

14546

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \]

14547

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \]

14548

\[ {}y^{\prime \prime }-4 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]

14549

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]

14552

\[ {}y^{\prime \prime }+9 y = \delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \]

14553

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \delta \left (x -1\right ) \]

14554

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (x \right )+2 \delta \left (x -\pi \right ) \]

14555

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \delta \left (x -\pi \right ) \]

14556

\[ {}y^{\prime \prime }+a^{2} y = \delta \left (x -\pi \right ) f \left (x \right ) \]

14862

\[ {}y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

14863

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14893

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

14894

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14895

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14896

\[ {}y^{\prime \prime }+2 y = 0 \]

14897

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t} \]