5.23.2 Problems 101 to 200

Table 5.1005: Higher order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

2719

\[ {}y^{\prime \prime \prime \prime }-y = g \left (t \right ) \]

2720

\[ {}y^{\prime \prime \prime \prime }+y = g \left (t \right ) \]

2721

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 t^{2}+4 \sin \left (t \right ) \]

2722

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = t +\cos \left (t \right )+2 \,{\mathrm e}^{-2 t} \]

2723

\[ {}y^{\prime \prime \prime \prime }-y = t +\sin \left (t \right ) \]

2724

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = t^{2} \sin \left (t \right ) \]

2725

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t^{2} \]

2726

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = t +{\mathrm e}^{-t} \]

2727

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = t^{3} {\mathrm e}^{-t} \]

3118

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \]

3124

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = x^{2}+8 \]

3126

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-12 y = x +{\mathrm e}^{2 x} \]

3127

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = {\mathrm e}^{4 x} \sin \left (x \right ) \]

3129

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} x \]

3130

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \sin \left (k x \right ) \]

3134

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = \left (2 x^{2}+x \right ) {\mathrm e}^{-2 x}+5 \cos \left (3 x \right ) \]

3136

\[ {}y^{\prime \prime \prime \prime }+4 y = 5 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

3153

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime } = \cos \left (2 x \right ) \]

3154

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = {\mathrm e}^{3 x} \]

3157

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \]

3158

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

3159

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (x \right ) \]

3167

\[ {}y^{\prime \prime \prime }+y^{\prime } = \tan \left (x \right ) \]

3171

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

3181

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

3182

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = \sin \left (x \right )-{\mathrm e}^{4 x} \]

3183

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 4 \,{\mathrm e}^{x}+3 \cos \left (2 x \right ) \]

3191

\[ {}y^{\prime \prime \prime }-y = x^{2} \]

3192

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = x^{2} {\mathrm e}^{-x} \]

3193

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

3194

\[ {}y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (\sin \left (x \right )-x^{2}\right ) \]

3195

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = {\mathrm e}^{2 x} \left (x -3\right ) \]

3196

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = \sin \left (3 x \right )+x \,{\mathrm e}^{x} \]

3197

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x^{2} {\mathrm e}^{2 x} \]

3198

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2}+\cos \left (x \right ) \]

3199

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }+2 y = \sin \left (2 x \right ) \]

3200

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{3}-\frac {\cos \left (2 x \right )}{2} \]

3201

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (x \right ) \]

3202

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (2 x \right ) \]

3203

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2} \sin \left (x \right ) \]

3204

\[ {}y^{\prime \prime \prime \prime }-y = x^{2} \cos \left (x \right ) \]

3208

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right ) \]

3209

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime } = x^{2} \]

3211

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

3212

\[ {}y^{\prime \prime \prime }-y^{\prime } = x \sin \left (x \right ) \]

3213

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \cos \left (2 x \right ) \]

3491

\[ {}y^{\prime \prime \prime }-12 y^{\prime }+16 y = 32 x -8 \]

3588

\[ {}y^{\prime \prime \prime } = 6 x \]

3713

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 4 \,{\mathrm e}^{2 x} \]

3714

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 24 \,{\mathrm e}^{-3 x} \]

3715

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = 6 \,{\mathrm e}^{-x} \]

3721

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 4 x^{2} \]

3722

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 9 \,{\mathrm e}^{-x} \]

3723

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}+3 \,{\mathrm e}^{2 x} \]

3730

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 4 x \,{\mathrm e}^{x} \]

3731

\[ {}y^{\prime \prime \prime \prime }+104 y^{\prime \prime \prime }+2740 y^{\prime \prime } = 5 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \]

3763

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {2 \,{\mathrm e}^{x}}{x^{2}} \]

3764

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 36 \,{\mathrm e}^{2 x} \ln \left (x \right ) \]

3765

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = \frac {2 \,{\mathrm e}^{-x}}{x^{2}+1} \]

3766

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 12 \,{\mathrm e}^{3 x} \]

3799

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = x^{2} \]

3800

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = \sin \left (4 x \right ) \]

3801

\[ {}y^{\prime \prime \prime }+9 y^{\prime \prime }+24 y^{\prime }+16 y = 8 \,{\mathrm e}^{-x}+1 \]

4159

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 \,{\mathrm e}^{2 x} x +{\mathrm e}^{2 x} \]

4160

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \cos \left (2 x +3\right ) \]

4461

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )+x \cos \left (x \right ) \]

4462

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = {\mathrm e}^{2 x} \sin \left (2 x \right )+2 x^{2} \]

4463

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+{\mathrm e}^{2 x} x \]

4464

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right ) \]

4465

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right ) \]

4466

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime }+y = 9 \,{\mathrm e}^{2 x} \]

4467

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 48 x \,{\mathrm e}^{x} \]

4468

\[ {}y^{\prime \prime \prime }-3 y^{\prime } = 9 x^{2} \]

4469

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 7+x \]

4471

\[ {}y^{\prime \prime \prime \prime }+16 y = 64 \cos \left (2 x \right ) \]

4472

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y = 44 \sin \left (3 x \right ) \]

4473

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y = 5 \cos \left (2 x \right ) \]

4475

\[ {}y^{\prime \prime \prime \prime }-y = 4 \,{\mathrm e}^{-x} \]

4477

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right ) \]

4478

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 2 \,{\mathrm e}^{x} \]

4489

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 15 \sin \left (2 x \right ) \]

4490

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 \sin \left (2 x \right ) \]

4491

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x} \]

4492

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 10 \,{\mathrm e}^{x} \sin \left (x \right ) \]

4493

\[ {}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 50 \,{\mathrm e}^{2 x}+50 \sin \left (x \right ) \]

4494

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x} \]

4495

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 32 \,{\mathrm e}^{2 x}+16 x^{3} \]

4496

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 72 \,{\mathrm e}^{3 x}+729 x^{2} \]

4529

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 10 \,{\mathrm e}^{-t} \]

4530

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (t -1\right ) \]

4531

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 t^{2} \operatorname {Heaviside}\left (t -2\right ) \]

4532

\[ {}y^{\prime \prime \prime \prime }+4 y = \left (2 t^{2}+t +1\right ) \delta \left (t -1\right ) \]

6512

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x} \]

6526

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 1+{\mathrm e}^{x} \]

6527

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (x \right ) \]

6528

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \]

6534

\[ {}y^{\prime \prime \prime \prime } = 5 x \]

6554

\[ {}y^{\prime \prime \prime }-y = 5 \]

6556

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} x^{2} \]

6713

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 5 \]