5.23.3 Problems 201 to 300

Table 5.1007: Higher order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

6714

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 5 \]

6715

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x \]

6732

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}+4 x +8 \]

6734

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 \,{\mathrm e}^{2 x} x +{\mathrm e}^{2 x} \]

6738

\[ {}y^{\prime \prime \prime \prime }-y = \sin \left (2 x \right ) \]

6739

\[ {}y^{\prime \prime \prime }+y = \cos \left (x \right ) \]

6742

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right ) \]

6775

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

7529

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

7530

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]

7531

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]

7534

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

7539

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

7582

\[ {}y^{\prime \prime \prime } = x^{2} \]

7659

\[ {}y^{\prime \prime \prime }-y = x \]

7660

\[ {}y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

7661

\[ {}y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

7662

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

7663

\[ {}y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

7672

\[ {}y^{\prime \prime \prime } = x^{2}+\sin \left (x \right ) {\mathrm e}^{-x} \]

7673

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

7984

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

8032

\[ {}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

8033

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

8034

\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \]

8332

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]

8333

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]

8872

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]

9165

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \]

11456

\[ {}y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0 \]

11468

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right ) = 0 \]

11469

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-y a^{3}-{\mathrm e}^{a x} = 0 \]

11478

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x} = 0 \]

11536

\[ {}y^{\prime \prime \prime \prime }+4 y-f = 0 \]

11538

\[ {}y^{\prime \prime \prime \prime }-12 y^{\prime \prime }+12 y-16 x^{4} {\mathrm e}^{x^{2}} = 0 \]

11539

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y-\cosh \left (a x \right ) = 0 \]

11545

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y-32 \sin \left (2 x \right )+24 \cos \left (2 x \right ) = 0 \]

11547

\[ {}4 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+11 y^{\prime \prime }-3 y^{\prime }-4 \cos \left (x \right ) = 0 \]

11578

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime }-a x -b \sin \left (x \right )-c \cos \left (x \right ) = 0 \]

11579

\[ {}y^{\left (6\right )}+y-\sin \left (\frac {3 x}{2}\right ) \sin \left (\frac {x}{2}\right ) = 0 \]

11582

\[ {}y^{\left (5\right )}+a y^{\prime \prime \prime \prime }-f = 0 \]

12929

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

12931

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \]

12934

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \]

12936

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \]

12943

\[ {}y^{\prime \prime \prime }-y = x^{2} \]

12944

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime } = 3 x^{2}+\sin \left (x \right ) \]

12945

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = {\mathrm e}^{x}+4 \]

12947

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right ) \]

12953

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

12955

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x} \]

12956

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

12958

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x \]

12961

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x} \]

12964

\[ {}y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2} \]

13178

\[ {}x^{\prime \prime \prime }+x^{\prime } = 1 \]

13181

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2} \]

13459

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+y^{\prime }-6 y = -18 x^{2}+1 \]

13460

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-3 y^{\prime }-10 y = 8 x \,{\mathrm e}^{-2 x} \]

13461

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7 \]

13462

\[ {}4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x \]

13465

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x} \]

13466

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x} \]

13467

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 x^{2}+4 \sin \left (x \right ) \]

13468

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \]

13469

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x} \]

13470

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 \,{\mathrm e}^{x} x^{2}-7 \,{\mathrm e}^{x} \]

13473

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9 \]

13474

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+7 y^{\prime \prime }-5 y^{\prime }+6 y = 5 \sin \left (x \right )-12 \sin \left (2 x \right ) \]

13489

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right ) \]

13490

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x} \]

13496

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = {\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{2 x} x +5 x^{2} \]

13497

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x} x +x^{2} {\mathrm e}^{3 x} \]

13498

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

13499

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2} \sin \left (2 x \right )+x^{4} {\mathrm e}^{2 x} \]

13500

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+{\mathrm e}^{-x} \sin \left (2 x \right ) \]

13501

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

13502

\[ {}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

13503

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

13504

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

13530

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = {\mathrm e}^{x} x^{2} \]

13654

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right ) \]

13655

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t} \]

13780

\[ {}x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t} \]

13781

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right ) \]

13782

\[ {}x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right ) \]

13783

\[ {}x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t} \]

13910

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

13912

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

13913

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

13924

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

13929

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

13930

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

13933

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

13937

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

13938

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

13961

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

13971

\[ {}y^{\prime \prime \prime } = 1 \]

14081

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]

14082

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]