5.27.17 Problems 1601 to 1700

Table 5.1199: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

17099

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{x} x^{2} \]

17100

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 16 \,{\mathrm e}^{-x}+9 x -6 \]

17101

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

17102

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right ) \]

17107

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

17108

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

17109

\[ {}y^{\prime \prime }-y = 1 \]

17110

\[ {}y^{\prime \prime }-y = -2 \cos \left (x \right ) \]

17111

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

17112

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

17113

\[ {}y^{\prime \prime }-y^{\prime }-5 y = 1 \]

17114

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]

17115

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \]

17116

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]

17148

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

17149

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

17150

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

17151

\[ {}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

17152

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

17153

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

17154

\[ {}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

17155

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

17189

\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \]

17190

\[ {}y^{\prime \prime }+y = 1 \]

17224

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

17225

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

17226

\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

17227

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \]

17228

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

17289

\[ {}x^{\prime \prime } = 1 \]

17290

\[ {}x^{\prime \prime } = \cos \left (t \right ) \]

17293

\[ {}x^{\prime \prime }-x^{\prime } = 1 \]

17294

\[ {}x^{\prime \prime }+x = t \]

17295

\[ {}x^{\prime \prime }+6 x^{\prime } = 12 t +2 \]

17296

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 2 \]

17297

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 4 \]

17298

\[ {}2 x^{\prime \prime }-2 x^{\prime } = \left (t +1\right ) {\mathrm e}^{t} \]

17299

\[ {}x^{\prime \prime }+x = 2 \cos \left (t \right ) \]

17642

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 \,{\mathrm e}^{2 t} \]

17643

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

17644

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = -3 t \,{\mathrm e}^{-t} \]

17645

\[ {}y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right ) \]

17646

\[ {}y^{\prime \prime }+9 y = t^{2} {\mathrm e}^{3 t}+6 \]

17647

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-t} \]

17648

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 2 \,{\mathrm e}^{t} \]

17649

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

17650

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

17651

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

17652

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = t^{2}+3 \sin \left (t \right ) \]

17653

\[ {}y^{\prime \prime }+y = 3 \sin \left (2 t \right )+t \cos \left (2 t \right ) \]

17654

\[ {}u^{\prime \prime }+w_{0}^{2} u = \cos \left (w t \right ) \]

17655

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 2 \sinh \left (t \right ) \]

17656

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (2 t \right ) \]

17657

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 t \]

17658

\[ {}y^{\prime \prime }+4 y = t^{2}+3 \,{\mathrm e}^{t} \]

17659

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t \,{\mathrm e}^{t}+4 \]

17660

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 t \,{\mathrm e}^{2 t} \]

17661

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (2 t \right ) \]

17662

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \]

17663

\[ {}y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \]

17664

\[ {}y^{\prime \prime }+y = t \left (\sin \left (t \right )+1\right ) \]

17665

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right ) \]

17666

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \]

17667

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 t^{2}+4 t \,{\mathrm e}^{2 t}+t \sin \left (2 t \right ) \]

17668

\[ {}y^{\prime \prime }+4 y = t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \]

17669

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t} \]

17670

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 t \,{\mathrm e}^{-t} \cos \left (2 t \right )-2 t \,{\mathrm e}^{-2 t} \cos \left (t \right ) \]

17671

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 2 \,{\mathrm e}^{-t} \]

17676

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{-t +\pi } & \pi <t \end {array}\right . \]

17677

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]

17678

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

17679

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 2 \cos \left (w t \right ) \]

17680

\[ {}y^{\prime \prime }+y = 2 \cos \left (w t \right ) \]

17681

\[ {}y^{\prime \prime }+y = 3 \cos \left (w t \right ) \]

17682

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (\frac {t}{4}\right ) \]

17683

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (2 t \right ) \]

17684

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (6 t \right ) \]

17687

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

17688

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

17689

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

17690

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

17691

\[ {}y^{\prime \prime }+y = \tan \left (t \right ) \]

17692

\[ {}y^{\prime \prime }+4 y = 3 \sec \left (2 t \right )^{2} \]

17693

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

17694

\[ {}y^{\prime \prime }+4 y = 2 \csc \left (\frac {t}{2}\right ) \]

17695

\[ {}4 y^{\prime \prime }+y = 2 \sec \left (2 t \right ) \]

17696

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

17697

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

17698

\[ {}y^{\prime \prime }+4 y = g \left (t \right ) \]

17709

\[ {}y^{\prime \prime }+y = g \left (t \right ) \]

17716

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = t^{2} {\mathrm e}^{t}+7 \]

17717

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = t^{2}+7 \]

17718

\[ {}y^{\prime \prime }+4 y = 3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \]

17719

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = t \cos \left (2 t \right ) \]

17722

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17723

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

17724

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]

17726

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t \]

17730

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = {\mathrm e}^{-2 t} \sin \left (5 t \right ) \]

17731

\[ {}y^{\prime \prime }+w^{2} y = \cos \left (2 t \right ) \]